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Abstract

Several mitigations for the Spectre class of vulnerabilities have been proposed and
implemented in different compilers. However, formally verifying that these compiler
countermeasures are indeed effective is challenging. Existing methods overapproximate,
leading to unverifiable mitigations, and can only reason about leakage models that
include branch outcomes. We present a new approach based on hypersimulations that
can be used to verify compiler countermeasures for a variety of leakage models, and
can handle countermeasures that previously could not be verified. We also discuss an
issue with Speculative Load Hardening in some leakage models. Our work has been
formalized in the Coq proof assistant.
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1 Introduction

The Spectre class of vulnerabilities, first revealed in early 2018 by Kocher et al| [2019],
is a class of hardware vulnerabilities present in most recent CPUs. It exploits a feature
called speculative execution, which is used by pipelined processors to avoid stalls. This
is achieved by predicting, among other things. the outcomes of branches, store-to-load
dependencies or even return addresses [Canella et al), 2019]. The CPU will continue
executing according to the prediction. If the prediction turns out to be incorrect, the
internal state will be rolled back, and execution continues along the proper path.

This entire process is supposed to be transparent, i.e., it should not be observable
above the microarchitectural level. However, Kocher et al|[2019] discovered that effects
of speculative execution on the cache, for instance, are not rolled back and can produce
observable side-effects. This allows attackers to extract information from rolled back
executions, bypassing bounds checks and other safety measures.

A variety of mitigations for Spectre, both in hardware and in software, have been
proposed since then. While specific vulnerabilities have successfully been mitigated in
processors using microcode updates according to Canella et al| [2019], many Spectre
variations remain unmitigated. Generally, hardware mitigations require changes to the
microarchitectural design, which would not only take a long time to implement, but may
also be prohibitively expensive. Even if successfully implemented, however, hardware
mitigations can only protect future processors, and software mitigations are necessary
to protect programs running on current hardware.

Software mitigations generally fall into two categories: Tools like 007 [Wang et al,,
2018] and Spectector [Guarnieri et al), 2018] rely on program analysis after compila-
tion, whereas others, like Speculative Load Hardening [Carruth, 2018], the mitigation
implemented in the Microsoft Visual C++ compiler (MSVC)[Pardoe, 201§], or the
initial mitigation proposed by Intel [Intel, 2018], are performed during compilation.
Compiler-based countermeasures are generally quick to apply, but not as precise.

Of course, one way to prevent leakage through speculative execution is to prevent
speculative execution altogether, as Intel’s mitigation achieves. This, however, impacts
performance significantly®. Thus, the goal of a mitigation is not just to prevent leakage
through speculative execution, but to do so while reducing the performance impact.
This makes mitigations more complicated, and verifying their correctness nontrivial.

Mitigations relying on program analysis, such as Spectector [Guarnieri et al), 2018§],
can ensure that the resulting program is secure by showing that there are no coun-
terexamples.While this could also be done as translation validation after applying a

TWang et a1.7[2018] report a performance overhead of 430% for the insertion of fence instructions at
every branch




1 Introduction

compiler-based countermeasure, this would negate the time benefits of using simpler
compiler mitigations.

Thus, it would be preferable to prove once that a mitigation produces secure pro-
grams, removing the need to verify the result. We therefore present a general method
of verifying compiler countermeasures.

1.1 Related Work

Building on work by Goguen and Meseguer [1982], noninterference is commonly used to
reason about information flow security. As defined by Barthe et al, [2018], it requires
that all observations produced by a program depend only on public inputs that are
known to or even chosen by the attacker, and not on any secrets. To determine whether
a program satisfies noninterference, it is not sufficient to look at individual traces.
Instead, it is necessary to consider multiple traces to see whether they produce the
same leakage.

Noninterference is thus an example of a hyperproperty [Clarkson and Schneider,
2010]. Hyperproperties generalize properties, which are sets of traces (usually given as
a predicate). Clarkson and Schneider [2010] also generalized the concepts of safety and
liveness properties to hypersafety and hyperliveness.

For reasoning about Spectre vulnerabilities, Guarnieri et al, [2018] defined specula-
tive noninterference, a hyperproperty that accurately describes when a program is free
of spectre vulnerabilities. Speculative noninterference requires that two executions of a
program may only be distinguishable under speculative execution if they are also distin-
guishable nonspeculatively, in other words, equality of observable side effects must be
preserved under speculative execution. Guarnieri et al| [2018] achieve this comparison
by recovering the nonspeculative parts from traces with speculative execution.

Both noninterference and speculative noninterference are parametric in a leakage
model, but they are most commonly used with the constant-time leakage model [Barthe
et al), 2018, Guarnieri et al), 2018], which considers all control flow and the addresses of
all memory accesses as visible to an attacker and therefore captures all leakage through
timing and cache-timing side channels.

Cheang et al| [2019] gave an alternative hyperproperty for Spectre vulnerabilities,
trace property-dependent observational determinism. Instead of recovering the non-
speculative behaviour from a speculative trace, they consider four traces, of which two
are not allowed to misspeculate.

Guarnieri et al] [2018] have also introduced always-mispredict semantics as a way
to capture leakage introduced by speculative execution without having to accurately
model a branch predictor.

A technique to verify spectre mitigations in compilers was developed by Patrignani
and Guarnieri [2021]. Their approach avoids reasoning about multiple executions by
defining speculative safety, a property of a single trace, as an approximation of spec-
ulative noninterference. They then treat the mitigation as a compilation pass from a
language without speculative execution to one with speculative execution. As programs
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without speculative execution always satisfy speculative safety, they can prove that a
mitigation is secure by proving that it preserves speculative safety, for which they use
backtranslation.

However, speculative safety relies on taint tracking and does not keep track of implicit
flows, as it was designed for the constant-time leakage model, where such flows would
appear indirectly via the leaked branch outcome. Therefore, speculative safety can not
be used with leakage models that do not include control flow, as the taint tracking
would not be correct. Furthermore, even in leakage models that do leak control flow,
there are programs that satisfy speculative noninterference, but not speculative safety.
Thus, their approach is not able to verify all mitigations.

For classical side-channel attacks (that do not exploit speculative execution), Barthe
et al| [2018] developed a technique to show that constant-time noninterference is pre-
served by individual compilation steps. They extended the common simulation ap-
proach used for regular properties to constant-time simulations, which now include two
executions of the source program and two of the compiled program. This allows them
to prove the preservation of noninterference by proving that for every step where the
source traces produce equal leakage, the target traces also produce equal leakage. How-
ever, their technique requires that the traces can be executed in lockstep, so the control
flow in both trace pairs must be the same. Therefore, it can not be applied to leakage
models that allow different control flow.

Rosemann [2023] generalized constant-time simulations to hypersimulations. Hyper-
simulations can be used for a wider variety of hyperproperties, as they can deal with any
number of traces, not just pairs. More importantly, however, they replace the lockstep
execution of constant-time simulations with more general synchronizers, which means
that they can be applied to traces with differing control flow. This makes hypersimula-
tions applicable in more situations, in particular, for leakage models that do not include
control flow.

1.2 Contributions

We propose using hypersimulations as a tool to verify spectre mitigations. Like Pa-
trignani and Guarnieri [2021], we treat the mitigation as a compilation pass where the
source and target languages have the same syntax, but different semantics: The source
language does not have any kind of speculative execution, whereas the target language
does.

First, we define speculative noninterference as a property of not just the compiled
(mitigated) program, but of the source and compiled program together. For one, this
is more accurate than the previous characterizations by Guarnieri et al| [2018] and
Cheang et al| [2019]: For any characterizations which only consider the nonspeculative
behaviour of a program after a mitigation has been applied, a program could be made to
satisfy this definition by introducing more nonspeculative leaks instead of eliminating
speculative leaks. More importantly, however, this allows us to characterize specula-
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tive noninterference as the preservation of a hyperproperty, which allows us to apply
hypersimulations.

We then demonstrate our approach by verifying that the mitigation proposed by
Intel [Intel, 2018, 2021] produces speculative noninterferent programs not only for the
constant-time leakage model (confirming the result of Patrignani and Guarnieri [2021))),
but also for a leakage models that do not include all control flow, where the previous
approach was not applicable.

We further demonstrate the benefit of working with hyperproperties directly by de-
signing and verifying a mitigation that produces code satisfying speculative noninterfer-
ence, but not speculative safety, and is thus not verifiable by Patrignani and Guarnieri
[2021].

Finally, we demonstrate an issue with Speculative Load Hardening[Carruth, 2018]
and always-mispredict semantics, which makes it unverifiable in leakage models that
do not include all control flow.

1.3 Formal Verification in Coq

All proofs presented in this thesis have been formalized in and verified by the Coq
proof assistant [The Coq Development Team, 2022]. The proof scripts are available at
https://compilers.cs.uni-saarland.de/projects/hypre-spectre/toc.html.

To avoid obscuring the main proof ideas and results with details, we will not reproduce
all proofs in their entirety in this thesis. Instead, we provide proof sketches that capture
the main ideas, and refer to the Coq proof scripts for details.

Proofs and definitions will refer to the corresponding sections in the Coq development
like this [Preserve ct.v, fence preserve_ct], indicating the file and name under which
the proof or definition in question can be found. If reading this document digitally, they
also link to the file online.

The Coq development also includes a work-in-progress version of the HyPre library
(logical path HyPre) by Rosemann [2023], which is required for our proofs, but has
not yet been published. The work for this thesis is found under the logical path
HypreSpectre and consists of 1252 lines of specification and 2438 lines of proofs.


https://compilers.cs.uni-saarland.de/projects/hypre-spectre/toc.html
https://compilers.cs.uni-saarland.de/projects/hypre-spectre/HypreSpectre.Preserve_ct.html#fence_preserve_ct

2 Regular and Speculative
Semantics

2.1 Toy Language Syntax

We use a simple list-based imperative language £, where a program is a list of state-
ments.

We will be using common list notations, including [] for empty lists, :: for cons (ap-
pending a head to a list) and ++ for concatenating two lists. For programs specifically,
however, we opt to use a semicolon instead of :: for readability reasons.

Exprse::=n neN
| z x is a variable name
ler+eg el —ex|eg xeg

lep <eg|er=ey|le

Stmt 3 s::=skip
| fence
|z :=e
| read [e] x
| write [e]
| if e then p; else p, end
| while e do p; finally p end

Progsp::=s;p||]

Figure 2.1: Syntax of £ [Lang.v, stmt]

The syntax of our toy language is shown in . Note that memory accesses

can not occur within expressions, but require their own instructions. This simplifies
reasoning about leakage caused by memory accesses, as it means that the evaluation of
expressions will not produce such leakage.


https://compilers.cs.uni-saarland.de/projects/hypre-spectre/HypreSpectre.Lang.html#stmt

2 Regular and Speculative Semantics

One particularity of our language is the inclusion of a finally clause in the while state-
ment. There is no functional difference between code in the finally clause and code
after the while statement, however, it does simplify the simulation relations for our

mitigations (see for example )

2.2 Environments and Evaluation of Expressions

Our environments consist of a heap H, which maps integers to integers, and a set of
variable bindings )V that maps variable names to integers. Both V and H initially map
all variables and addresses to 0, unless otherwise specified. Thus, they are total. We use
the notation V[z — v] to denote updating variable = to value v and similarly H[a — v]
to denote updating address a.

When specifying heaps or variable mappings, we will give them as a list of assignments
to nonzero values. This list may be empty if nothing is assigned a nonzero value, for
example, the initial variable mapping is represented as [].

Since we only use integer values, <, = and ! have integer results similar to how they
behave in C. Other than that, all operations behave as expected.

Due to the omission of division, the evaluation of expressions is total. As it also does
not produce leakage in the leakage models we consider, we can therefore use big-step
semantics to evaluate expressions. We denote this evaluation by [-]y, where V is the
set of variable bindings.

2.3 Nonspeculative Semantics

In the nonspeculative semantics, a program state (V' | H | p) consists of a set of variable
bindings V, a heap ‘H and a program p. p may be the empty program [|, which signifies
termination.

The nonspeculative semantics is shown in . Note that our semantics reduces
while statements to if statements, so that there is only one instruction where control
flow can differ and speculative execution can start. Otherwise, many intermediate
results would need to be proved twice, both for if and for while, instead of just once.
Note also that in the nonspeculative semantics, the fence instruction behaves the same
as skip.

One oddity of this semantics is that it repeats final states (states where the program
is empty) infinitely. This choice was made because hypersimulations require infinite
traces. However, this does not mean that information about termination is lost, it can

be reintroduced via the leakage model (see )

2.4 Speculative Semantics

To model speculative execution, we use an always-mispredict semantics as described
by Guarnieri et al| [2018], which captures all possible leakage by considering all paths



2.4 Speculative Semantics

FENCE

SKIP
V| H | skip;p) —=ns V| H | D) (V| H | fence;p) —ns V| H | p)

[[GHV — Y ASSIGN
WV IH|x:=ep)y—n V]| H|p
lay =a' M) = -~

(V| H | read [a] z;p) —ns VIz — 0] [H | p)

[a]y = & V(z) =wv

; WRITE
V| H [write [a] 2;5p) —ns V[ H[d — v] | p)

[6]y # 0

IFTRUE
(V| H|if bthen p; else py end;p) —ns V| H | p1 +p)

[6]y =0

IFFALSE
(V| H | if b then p; else py end;p) —us V| H | p2+p)

WHILE

(V| H | while b do p; finally py end;p)
—ns (V| H | if b then (p; H while b do p; finally p, end) else po end;p)

TERM

VIHD —=us VIH D

Figure 2.2: Nonspeculative semantics of £ [Lang.v, smallstep_nonspec]

along which the processor may speculatively execute. To this end, whenever a branch
instruction is encountered, the semantics first begins executing the incorrect branch
speculatively for some number of steps until that execution is rolled back and execution
continues along the correct branch. Importantly, in the case of nested speculation, only
the innermost execution is rolled back. This way, the semantics also captures leakage
that occurs when the prediction is incorrect for an outer, but correct for an inner branch.

The semantics operates on configurations that consist of a stack S of speculative
states, where each state consists of a variable map V, a heap H and a program p as
well as a speculation window n. The speculation window limits for how many steps
speculative execution can continue. Nonspeculative execution is not limited and does
not have a speculation window, which we indicate with L.

One step of execution depends only on the topmost element of the stack, everything
below remains unchanged. Most instructions execute according to their nonspeculative
semantics, but decreasing the speculation window by one, with two exceptions: The
fence instruction directly sets the speculation window to 0 and if b then c; else ¢y end


https://compilers.cs.uni-saarland.de/projects/hypre-spectre/HypreSpectre.Lang.html#smallstep_nonspec

2 Regular and Speculative Semantics

L ifn=1 woifn=1
decr(n) := { n —1 otherwise wndwin) = { n—1 otherwise
1L ifn=_1
no-rollback(n) :=n>0vn =1 zero-out(n) := { 0 otherwise
no-rollback(n)
: AMSKIP
n|V|H]|skip;p):: S —g (decr(n) |V | H |p):S
no-rollback(n)
AMFENCE
(n|V|H|fence;p):S —y, (zero-out(n) [ V| H | p):: S
-rollback =
no-rollback(n) — [e]y = v AMASSIGN

| V|H]|x:=¢epy:S —g {decr(n) | V[ —v] | H|p):S

no-rollback(n) la]y = d H(d) =

v
AMR
(n|V|H|read [a] z;p):: S —g {decr(n) | V[r —v] | H |p): S BAD

no-rollback(n) [aly =d"  V(z)=wv
; AMWRITE
n |V |H |write [a] z;p):: S —g, {decr(n) | V| H[a" — v] | p):: S

no-rollback(n)
AMWHILE
(n |V |H |while e do p; finally ps end;):: S
—¢p (decr(n) | V| H | if e then (p; H-[while e do p; finally p, end]) else p, end;p)
)

no-rollback(n) 6]y # 0
AMIFTRUE
(n|V|H|if bthen p; else py end;p):: S
- (wndw(n) | V| H | po+Hpy:{decr(n) |V | H | pr+Hpy:= S

no-rollback(n) [b]y =0
AMIFFALSE
{(n |V |H|if bthen p; else p, end;p):: S
—gp (wndw(n) | V| H | pr Hpy:{decr(n) | V| H | p2++p):= S

AMR n<lAan>0 AMR T
OLLBACK OLLBACK
OIVIH[p)=S -y S M| VIH[[]D:S =y S
AMTERM AMTERM’
CIVIHI DS (L VIH )5S 0[]

Figure 2.3: Speculative semantics of £ [Lang.v, smallstep_spec_amn|


https://compilers.cs.uni-saarland.de/projects/hypre-spectre/HypreSpectre.Lang.html#smallstep_spec_am

2.5 Initial States

- , i—'Ses 5—>ts
MPTY NIT TEP
i —"] i > [] =i i ' S>s>t

Figure 2.4: Rules for generating traces

starts misspeculation by pushing a state for the incorrect branch to the top and the
correct branch below, both with the speculation window decreased by 1. Finally, spec-
ulative executions are rolled back once the speculation window reaches 0 or there is no
code left to execute. This happens by simply removing them from the stack so that
execution can continue with the state below. The complete set of rules can be seen in
Figure 2.4

The semantics as presented here is parametric in the speculation window w, which is
used to initialize speculative execution in case the outer execution is nonspeculative. In
the accompanying Coq development as well as in all examples, we will use a speculation
window of 16 for illustration purposes. In practice, however, a much larger window
should be chosen depending on CPU architecture. A safe value would be twice the size
of the reorder buffer [Guarnieri et al, 2018§].

Similar to the nonspeculative semantics, final states — nonspeculative states with the
empty program — are repeated indefinitely. In order to obtain a total semantics, we
also treat the empty stack this way. Note however that the empty stack can not occur
as long as we start all executions with nonspeculative states, as nonspeculative states
can not be rolled back.

2.5 Initial States

For our purposes, we assume that all variables are initially zero. Input is passed to the
program by storing it in the heap. Given a program p and and initial heap i, the initial
state for nonspeculative execution will be (i)ns := ([] | i | p) and the initial state for
speculative execution will be (i), := (L |[]| 1] p)::[]. Note that we omit the source
program p in the notation, because we never have more than one source program that
would need to be distinguished.

2.6 Trace Prefixes

When using hypersimulations, we reason about infinite traces of programs, or, more
precisely, finite prefixes thereof.

Since both our semantics are deterministic, we can identify an infinite trace with its
initial state (i). We can then generate all finite prefixes of this infinite trace inductively
according to the rules presented in . Note that = behaves like :: for traces,
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except the order is reversed for readability reasons. This way, new states are appended
to the right.

In this thesis, we will generally use the roman alphabet for traces in the nonspecula-
tive semantics and the greek alphabet for traces in the speculative semantics. We will
write (i)ns =%, a to denote that a is a valid trace prefix for input i according to the
nonspeculative semantics, and similarly (i), —>§p a to denote that « is a valid trace
prefix for input i according to the speculative semantics.

Trace prefixes can be concatenated with sequences of states if the resulting sequence of
states respects the semantics. We will simply write ab for a trace prefix a concatenated

with a sequence of states b.

10



3 Leakage Models

3.1 General Assumptions

In all our examples (and all leakage models we use), we treat the variables as not
observable to an attacker. We split the heap into a public and a private part similar
to Patrignani and Guarnieri [2021], with the private part in the negative addresses and
the public part in the nonnegative addresses. This means that data from a positive
address can safely be leaked as it is known to the attacker anyway, while data from a
negative address should not be leaked. We will also use the heap for input, so secret
inputs will be stored at negative addresses and public or attacker-controlled inputs at
nonnegative addresses.

3.2 Low-Equivalence

In order to detect leakage of secrets, we want to compare executions of a program where
all public (attacker-controlled and attacker-visible) data is the same, but secret data
may be different. If the attacker can not detect a difference, then the secrets do not
leak.

Since we use heaps as inputs, we thus define low-equivalence as a relation on heaps:
Two heaps are low-equivalent, written ~, if their public (low-security) parts, i.e. ev-
erything at a nonnegative address, are the same.

7’[1 ~L Hz <= Vne N’Hl(n) = Hg(ﬂ)

3.3 Leakage Functions

In previous methods [Barthe et al), 2018, Patrignani and Guarnieri, 2021], the leak-
age was included in the semantics, which means that the semantics would have to be
adjusted for every leakage model. This way, the executions can directly produce a
sequence of observations without having to produce a complete trace.

Since hypersimulations require the complete traces anyway, we can instead model
leakage as a function from a trace prefix to a list of observations. This makes the
leakage model independent of the semantics, so we can reason about different models
without any changes to the semantics.

We define our leakage functions on individual states, such that they always describe
the leakage that will be produced by the next execution step. They will be lifted to

11



3 Leakage Models

(V| H | read [a] z;p)) = read [a]y

. write V(z) to [a]y if [ally =0
etV | H | write [a] z;p)) = { write [[a(]]v) ol otl[[le]l]“vwise

branch T if [b]y # 0

gCt(<V | H | if b then p1 else p2 end’p>) - { branch 1 otherwise

L (V| H | [])) = end
bV | H|p) =¢ otherwise

la(QO[V[H | p) =€
lLy({n | V| H | read [a] x;p)) = read [a]y

. write V(z) to |a if fa]y =0
Calln |V 7 urive o aip) = | ey o to T 8l =

branch T if [b]y # 0

le((n |V [H | 1f b then p; else p; end;p)) = { branch | otherwise

(e ((L[VIH[[]) = end
le((n | V| H|p)) =¢  otherwise

Figure 3.1: Leakage function /., on speculative [Leak.v, leak ct'] and nonspeculative
[Leak.v, leak_ct] states

trace prefixes by concatenating the individual leakages. € represents the empty word,
i.e. the absence of an observation, and will disappear during concatenation.

In our examples, we will use three different leakage functions: /. () cor-
responds to the constant-time leakage model. Therefore, it includes the outcome of
branch instructions and accessed memory addresses. £, (Figure 3.2), in contrast, still
includes accessed memory addresses, but it replaces complete information about the
control flow (branch outcomes) with only loop headers. Finally, £em () only
includes the accessed memory addresses.

As mentioned in , our traces repeat final states indefinitely. Thus, all our
leakage functions also produce the end observation for final states® to signify that the
execution has terminated.

Since we treat the public heap as visible throughout the entire execution, not just at
the end, write observations to the public heap also include the written value, whereas
those to the private heap only include the address. To model an attacker that can

While this means that the end observation is also repeated indefinitely, this does not convey any
more information than producing the observation just once or allowing traces to end, which would
both require special handling with our technique.
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3.3 Leakage Functions

b (V| H | read [a] z;p)) = read [a]y
(V| H | vrite [a] 2:p) { write V(z) to [aly if [a]y > 0

) =
) = write [a]y otherwise
O ((V | H | while b do p; finally ps end;p)) = loop
O (V[ H [ [])) = end
€1m<<v ’ H | p>)

otherwise

ln (O |V [ H [ p)
On({n |V | H | read [a] z;p)) = read [a]y
{ write V(z) to [a]y if Ja]y =0

write [a]y otherwise

) =
) =
b ((n | V| H [ write [a] z;p)) =
) =
) =
) =

Om({n | V| H | while b do p; finally py end;p)) = loop
b ((L |V [ H [ ])) = end
b0 | V| H | p) otherwise

Figure 3.2: Leakage function #},, on speculative [Leak.v, leak_1lm'] and nonspeculative
[Leak.v, leak_lm| states

lnem (V| H | read [a] z;p)) = read [a]y
{ write V() to [a]y if [a]y =0

) =
lnenn (V| H | write [a] z;p)) = write [a] otherwise
lnem ((V [ H | [])) = end

lnen (V| H [ p)) =

otherwise

lmen (O |V [ H | p)
lem({n | V| H | read [a] x;p)) = read [a]y

) =
)=
lnem ({0 | V| H | write [a] x;p)) = { Wr?te V(x) to [a]y if [a]y =0
) =
) =

write [a]y otherwise
gmem(<—]— | 1% | H | []> = end
lem ((n [ V[ H | p)

otherwise

Figure 3.3: Leakage function £, on speculative [Leak.v, leak_mem']| and nonspecula-
tive [Leak.v, leak_mem]| states
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3 Leakage Models

only see the final state of the heap, one could alternatively only leak the addresses, and
include the state of the public heap in the termination observation.

3.4 Leakage Equivalence

For finite trace prefixes, we can simply evaluate the leakage function to determine
whether they produce the same leakage. Therefore, we first introduce the following two
relations on trace prefixes, parametric in a leakage function ¢:

a=,b = {(a)=10(D)
asyb = [((a)is a prefix of £(b) or vice versa

Infinite traces, however, can not be compared directly. We therefore define leakage
equivalence of two traces as follows:

termination insensitive leakage equivalence Two traces t; and ¢, are termination
insensitive leakage equivalent under a leakage model /¢ if, for any finite prefixes
a; and as such that ¢t; —! a; and t; —! as, it holds that a; <, as.

termination sensitive leakage equivalence Two traces t; and t, are termination
sensitive leakage equivalent under a leakage model ¢ if they are termination in-
sensitive leakage equivalent and, additionally, for all prefixes a; and a, such
that t; —' a; and ty —! as, there exist sequences of states b; and by such that
t1 =t a1by, ty =t ashy and a;by =; ashs.

Intuitively, the first definition simply accounts for the fact that trace prefixes can
correspond to any point during execution by only requiring that the leakage that has
already been produced can not be different. Of course, since this must hold for all trace
prefixes; this also means that future leakages will be the same.

However, there is one case in which this is not sufficient, which only occurs if the
leakage model does not contain control flow. In that case, it is possible for a program
to enter an infinite loop that does not produce any further leakage. The other trace
could then produce arbitrary leakage and the traces would still be considered leakage
equivalent. Therefore, we have the second definition, which additionally requires that we
can extend the two trace prefixes such that they will produce the exact same leakage.
Intuitively, this means that the trace that currently has less leakage will eventually
“catch up”.

To simplify working with termination sensitive leakage equivalence, we also define
the following relation on trace prefixes [Prefix sens.v, 11 _pre_sens|:

asShibi=asba(3d V. ey > ad A dp) =BV A ad =, bb)

This relation encapsulates all the additional requirements, such that the traces produced
by the inputs i, and i, are terminations sensitive leakage equivalent if all finite trace
prefixes a and b satisfy a S/, b. Note that this relation is additionally parametric in
the initial program and input, which are needed to enforce that the traces are correct
according to the semantics.
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3.5 Noninterference and Speculative Noninterference

3.5 Noninterference and Speculative
Noninterference

We can now define noninterference and speculative noninterference based on leakage
equivalence:

noninterference A program is noninterferent if two traces are leakage equivalent
whenever they start in low-equivalent states.

iy ~pig = (Vab. (i) ' an{iy) —>'b=a S40)

speculative noninterference A pair of a source and a compiled program is specula-
tively noninterferent if leakage equivalence of two source traces implies leakage
equivalence of target traces starting in the same environments.

Vil ig. (VCLb <i1>ns _)fls a N <i2>ns _)fls b=a §2_1 b)

:><VQB'<i1>Sp _>ép o A <j‘2>5p _>ép 6 = a §Z ﬂ)

Both definitions can also be instantiated with termination insensitive leakage equiva-
lence.

Note that Barthe et al| [2018] also distinguish between termination insensitive and
termination sensitive noninterference, but their distinction is different. Our definition of
termination sensitive noninterference can be seen as a generalization of theirs that does
not require equal control flow. Their version of termination insensitive noninterference,
however, only requires that the same observations are produced if both executions
terminate, but imposes no restrictions otherwise. In contrast, our definition requires
that as long as both traces do produce leakage, they must be the same, and only allows
that one trace may produce more observations than the other.

3.6 Security of Mitigations

A mitigation can be considered secure if it always produces speculatively noninterferent
programs. Speculative noninterference, as we define it, is a property of the source and
compiled versions of a program and requires that leakage equivalence was preserved
across compilation for the program in question. Thus, if we want to show that a
mitigation always produces speculatively noninterferent programs, we need to prove
that it preserves leakage equivalence.
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4 Using Hypersimulations

4.1 Simulations

Hypersimulations require a simulation between the source and target program. We use
manysteps simulations as defined by Barthe et al) [2018]. There is also a more general
concept of general simulations, which allow that the target trace takes less steps than the
source trace. General simulations can also be used with hypersimulations [Rosemann),
2023], but we omit them since manysteps simulations are enough for our purposes.

A simulation is a relation ~ between states in the source semantics and states in
the target semantics. It is defined with respect to a synchronizer function sync, which
specifies how many steps in the target semantics need to be executed to match one step
in the source semantics. Together, they must satisfy the following properties:

« For any state a, sync(a) must be greater than zero.
o For any input, the initial states in the source and target semantics must be related.

« For related states a ~ «, the state a’ obtained by executing one step of the source
semantics on a and the state o’ obtained by executing sync(a) steps of the target
semantics on a must again be related (a’ ~ o).

4.2 Hypersimulations

Hypersimulations extend simulations to tuples of traces by having multiple simulations
in parallel. A hypersimulation thus depends on three relations: an equivalence relation
=g on trace prefixes in the source language, an equivalence relation =¢ on trace prefixes
in the target language, and a simulation relation ~ between trace prefixes in the source
and target language.

The defining property of a hypersimulation is that when starting with source trace
prefixes a; and as and target trace prefixes oy and as such that a; =g a2, a1 =¢ ao,
a1 ~ a1 and as & g, it must be possible to extend all trace prefixes according to
the semantics and simulation relation such that both the source and target relation are
satisfied once morell. A visualization of a hypersimulation can be seen in (red
lines mark the proof obligations to show that =g,=¢ and ~ form a hypersimulation).

'We present only hypersimulations for 2-hyperproperties, with 2 source traces and 2 target traces.
Hypersimulations can also be used for k-hyperproperties for any k, in which case they require k
source traces and k target traces.
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b2
a9 > a9 bQ

N\
\

by
ax : > arby

2
1%

dg > Oégﬁg

aq > oS

Figure 4.1: Diagram representing a hypersimulation

Since hypersimulations, unlike constant-time simulations, allow that the source traces
have different control flow, it is not desirable to always execute the traces in lockstep
(i.e. always the same number of steps). Instead, hypersimulations require some method
of determining how many steps each trace should be executed for. The easiest method,
which is sufficient in our case, is the use of a barrier predicate, where each trace will
be executed until the next barrier (state for which the barrier predicate is true). This
requires us to prove that the traces will still satisfy the relations at that point (see
Figure 4.2&). We call one such step to the next barriers a hyperstep. However, this
alone is not sufficient, as it leaves open what happens when no barrier is encountered.
Thus, we have two options: We can either prove that it is always possible to reach
another barrier (), or alternatively, that if one trace can not reach another
barrier, the source and target relations will be satisfied for any future state ()
Finally, all three relations must also be satisfied by the initial empty trace prefixes. We
will not mention this explicitly in our examples, as it is trivial for the relations we use.

4.3 Proving Preservation of Leakage Equality using
Hypersimulations

From a hypersimulation, we can only conclude that =¢ will always eventually hold, i.e.
there will always be some point in the future where it will be satisfied. However, to
prove speculative noninterference, we need to show that S, (or ;) always holds for
target trace prefixes, i.e. it must hold at every point during execution.

As such, a hypersimulation does not directly prove the preservation of leakage equal-
ity. To show that <, holds on the target traces, we can use the fact that it is a safety
hyperproperty [Rosemann, 2023], meaning that if it holds at any point during execution,
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4.3 Proving Preservation of Leakage Equality using Hypersimulations

Vi a1 Qg 01 (.
<il>ns _’fls ap A <j-2>ns _’fls as
= a1 =g Q2
= (Vb. (iins =L, asb = (Yn, = B(by,)))
= (i1)sp Hép a1 A (i2)sp Hép Q2
= 1 =c¢ Q2

= Vbl bQ. <il>ns _)fls albl AN <j.2>ns —>fls a2b2

Via. <i>ns _);s a = VBI 62- <i1>sp _)ép alﬁl A <j-2>sp _)zp ()-/262
= Jbbz.b=Vr>z = a1b; ~ a181 A asby ~ a3y
A (i )ns =g ab = a1by =g azby
~ B(z) A a1f =c¢ agfa
(a) Option 1: Traces always (b) Option 2: If one trace will not encounter another
encounter barriers barrier, the source and target relations will hold

Yay as aq .
(i1)ns =g a1 A (Sa)ns =g G2
= a1 =g a2
= (i1)sp =g 01 A (2)sp g 2
= Q1 =¢ Q2
= Vb by. (i1)ns = a1y A (iodns —1 asby
= V61 Ba. (i1)sp —kp Q101 A (L2)sp =4, Q22
= a1by ~ o151 A asby = anfs
= Vo by by. by = U] =11 A by = Uy =19
= B(x1) A B(x9)
= (Vn. =B (0),,)) A (Vn. = B(b),,))
= a1b; =5 azby

A a1 =c agfs

(¢) The hyperstep predicate: The source and target relation are satisfied after one hyperstep
to the next barriers

Figure 4.2: Predicates for hypersimulations using barrier synchronization. The hyper-
step predicate is required for both options.
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it must hold at all prior pointSE. If we use =, as the target relation in the hypersim-
ulation, we can then use the fact that =, implies <, to conclude that <, must always
hold at some point in the future. Therefore, since it is a safety hyperproperty, <, must
always hold.

For termination sensitive speculative noninterference, we can use the same approach
if we show that S/, is a safety hyperproperty and that =, implies S,.

Lemma 4.3.1 [Prefix__sens.v, vl_11_pre_sens_safety]. S, is a safety hyperprop-
erty.

Proof. Assume a,b,c and d such that b is a prefix of a, d is a prefix of ¢ and a S, c.
We have to show b S}, d.

Since s, is a safety hyperproperty, we can already conclude b <, d. It remains to
show that 30/ d'. (i) =" bV A (ig) =" dd' A DY =, dd'.

From a S, ¢ we know that there are ¢’ and ¢’ such that aa’ = ¢¢’. Since b is a prefix
of a, there is h; such that a = bh,. Similarly, there is hy such that ¢ = dhs.

By picking hqa’ for ¥ and hyd for d', bhid' = ad' =, ¢ = dhoc’ concludes the
proof. [

Lemma 4.3.2 [Prefix__sens.v, v1_11_eq_l1l_pre_sens|. For all iy, iy, a and b with
(i,) >'a and (ip)y >'b, a = b= a S}, b.

Proof. We already know that a <, 0.
It remains to show that 3a’ V. {(i,) —' aad’ A (i) = bV A aa’ =, bb'.
We can pick [] for both @' and ¥, the rest follows by assumption. O

To prove that a mitigation is effective, we first need to define a corresponding sim-
ulation relation. Then, to show that the mitigation preserves leakage equivalence, we
can choose a suitable source relation =g and show that it forms a hypersimulation with
=, as the target relation and the simulation relation.

2This definition is slightly different than the one by Clarkson and Schneider [2010], as we define it on
finite trace prefixes, not infinite traces. However, it still captures the core idea that once a safety
property is violated, it can not be recovered.
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5 Eager Insertion of Fences is
Secure

We will demonstrate the approach described in the previous chapter by showing that
Intel’s mitigation, the insertion of serializing fence instructions after every branch [Intel,
2018, 2021], is secure under all three leakage models presented in the previous section.

5.1 Modelling Intel’s Mitigation

(if b then p; else py end; pl)fence = if b then fence; (1)) fence

else fence; (P2)fence €nd; (P)fence

(while b do p; finally po end; p)fence = while b do fence; (p1)tence
flnally fence; (]pQDfence end; (]pl)fence

(]S? p[)fence = S) (]p[)fence OtherWISe

(][]Dfence = []

Figure 5.1: Compilation function that inserts fences [Mitigation.v, comp_fence]

In order to reason about a mitigation, we first have to model it for our toy language.
In this case, we can do so with a simple recursive function (-)¢.nc. that appends a fence
instruction in front of both cases of a branch, see Fiéure D. I The simulation relation
Rfence fOT this mitigation relates any source state (V| H | p) to the compiled program
in the same environment: (L |V | H | (p)tence, ::[]-

We can also define a synchronizer function syncg,,.. that, given a source state, de-
termines how many steps the compiled program needs to take to match the next step
of the source program. Whenever the source program executes a step that is not an
if statement, the compiled program needs to execute one step to match. For if state-
ments, the compiled program needs four steps: It starts speculating, reaches a fence,
rolls back the execution and needs to execute another fence instruction.

We can then show that ~fenee is indeed a simulation relation w.r.t. syncg,.:
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5 Eager Insertion of Fences is Secure

SYNCionco((V | H | if b then p; else py end;p)) =4
SYNCrenee (V| H | p)) =1 otherwise

Figure 5.2: Synchronizer for ()ence [Mitigation.v, cf_sim_step]

Lemma 5.1.1 [Mitigation.v, cf_sim_sync_correct]|. ~ece i a simulation relation
w.T.t. SYNChopce-

Proof. We need to show that if we start with states a ~gnce @ and execute one step on
a and syncg,,..(a) steps on o, we end up in states @’ and o with @’ ~fepee .

Note that for (‘)fence, the following holds: (p1 ++ p2)tence = (P1)fence H (P2 fonce- With
this, the proof follows by case distinction on the program and computing the appropriate
number of steps. O

Note that, as mentioned in , this simulation relation would not work with-
out the finally clause for while statements. The finally clause allows us to insert
fences at its beginning (see ), rather than after the while statement. With-
out it, applying ()fence to a while instruction and then taking a step in the speculative
semantics would yield a syntactically different program® than first taking a step in the
nonspeculative semantics and then applying () sence-

We also use syncg,,,., t0 lift ~ence to trace prefixes: The initial states must be related
according to Xfece. Following that, the next pair of states indicated by sync;,,., must
again be related. This repeats until the end of the trace and must account for all states,
i.e. the last states of the two traces must be related. We will use the same notation,
Rfence, 10T the relation lifted to traces.

Lemma 5.1.2 [Preserve_ ct.v, sim_same_leakage|. Frecuting one step in the source
program and the corresponding number of steps in the target program produces the same
leakage under ey, by, [Preserve_Im.v, sim_same_leakage/ and (e [Preserve_mem.v,
sim_same_leakage,.

Proof. By case distinction on the current statement in the source program. For an
if statement, the leakage is the same and the following fence instructions and rollback
do not produce any further leakage. For all other statements, the same statement will

be executed in the target program, yielding the same leakage. [
! Consider a program while ¢ do b end; [] that would compile to
while ¢ do fence;b end; fence;|[]. After one step of execution, this would become

if ¢ then fence;b+[while ¢ do fence;b end] else [| end; fence;|]. However,  execut-

ing one step nonspeculatively first and then applying the mitigation would instead yield
if ¢ then fence;b+[while ¢ do fence;b end] else fence;[] end;|].
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5.2 Speculative Noninterference under Constant-Time Leakage Model

5.2 Speculative Noninterference under
Constant-Time Leakage Model

To prove that () ence produces speculative noninterferent programs, i.e. that it preserves
termination sensitive leakage equivalence, we use the method described in .

For the constant-time leakage model, this means that we need a hypersimulation
with =, as the target relation to conclude that < ; holds for all target trace prefixes.
Concretely, we will also be using =, as the source relation, so we need to show that
(=pus=tus Afence) forms a hypersimulation. To this end, we use the predicate described
in [Figure 4.23.

This requires us to define a barrier predicate to determine for how many steps the
source execution continues. We define the barrier predicate B that is true for if,
read and write statements as well as final states.

Lemma 5.2.1 [Preserve_ ct.v, barrier_leak|. The barrier predicate Be is true for
a state iff that state produces leakage under U, i.e. adding this state to a trace yields
a longer sequence of observations.

Furthermore, we need to show that every source trace will always encounter another
barrier:

Lemma 5.2.2 [Preserve_ ct.v, src_term|. For any trace prefiz i —!, a, there is a
sequence of states bs = b such that i —_ a(bs =b) and b satisfies Be.

Proof. We can define a recursive function that calculates how many steps it will take to
reach a barrier. This is guaranteed to terminate, as the program gets smaller at every
step — in the case of a while statement, we know that the next step will execute an
if statement, so we do not need recursion.

Once we have determined the number of steps until the next barrier, we can execute
that number of steps in the semantics to obtain the sequence bs = b. [

Finally, it remains to show that the source and target relations are still satisfied after
one hyperstep:

Theorem 5.2.3 [Preserve_ ct.v, fence_preserve_ct|. (| fence produces programs
that satisfy termination sensitive speculative noninterference w.r.t. le.

Proof. We use the predicate from Eigure 4.2; with B¢ to show that =, =, and ~fence
form a hypersimulation. We know from [Lemma 5.2.2 that it is always possible to reach
another barrier. Thus, it remains to show that =, is still satisfied after one hyperstep:

o We have that a; and as as well as a; and as have the same leakage, and that by
and by are sequences of states where the barrier predicate is true only for the last
state. By , we thus know that £ (a1by) and l(asbs) have the same
length. Since we assume leakage equivalence on the source traces, this implies

ect(albﬁ = gct<a2b2)~
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5 Eager Insertion of Fences is Secure

e From , we know that ; and  must produce the same leakage as

by and by. Thus, we can conclude that l.i (a1 f1) = leg(a252).

We conclude that the target traces are leakage equivalent as described in .
]

5.3 Speculative Noninterference under /¢,

In the previous proof, the source traces are actually executed in lockstep, as the
constant-time leakage model forces the control flow to be the same. This was actu-
ally a requirement of both the approach by Patrignani and Guarnieri [2021] as well as
the constant-time simulations by Barthe et al) [2018]. Hypersimulations, however, have
no such restriction, so we can also evaluate (-)fnce under leakage models that do not
restrict control flow.

As a first step, consider the /},, leakage model which does not include all branches,
but instead only loops. This way, the control low may be different between the two
source traces, but their termination behaviour must still be the same. We can therefore
again use the predicate shown in [Figure 4.24 and the proof will not differ much from
the proof for the constant-time leakage model.

Since we are working with /;,,, we will use =, as both the source and target relation.
We start by defining the barrier predicate By,, which is true for while , read and
write instructions as well as final states.

Lemma 5.3.1 [Preserve_ ct.v, barrier_leak|. By, is true for a state iff that state
produces leakage under .

Then, similar to , we need to show that the source traces will always

encounter another barrier:

Lemma 5.3.2 [Preserve_ ct.v, src_term|. For any trace prefiz i —!, a, there is a
sequence of states bs = b such that i —_ a(bs =b) and b satisfies By, .

Proof. Since loops produce observations, a program can not diverge without reaching a
barrier. Thus, we can again define a recursive function that calculates how many steps
it will take to reach a barrier. This is guaranteed to terminate, as the while statement
is a base case.

Once we have determined the number of steps until the next barrier, we can execute
that number of steps in the semantics to obtain the sequence bs = b. 0

Theorem 5.3.3 [Preserve_ ct.v, fence_preserve_lm|. (ence produces programs
that satisfy termination sensitive speculative noninterference w.r.t. .

Proof. We use the predicate from lFigure 4.23| and tLemma 5.3.j to show that =, _, =
and ~fenee form a hypersimulation.
It remains to show that the source and target traces still satisfy ¢, after one hy-

perstep. The proof is analogous to that of rTheorem 5.2.3|, using By, and
instead of i;emma 5.2.1l. ]

m
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5.4 Speculative Noninterference under fyem

5.4 Speculative Noninterference under /e,

We can also go further and not include any control flow in the leakage model: £ em
only includes memory accesses and termination.

As the source and target relation, we pick =,__ , allowing us to conclude that §Znemi
is always satisfied for the target traces. The barrier predicate Ben will be true for
memory accesses and final states.

Lemma 5.4.1 [Preserve__mem.v, barrier_leak|. By is true for a state iff that
state produces leakage under e .

With this model, we can not use the same version of the predicate as before, as it
is possible for traces to diverge without producing any leakage. Therefore, we need to
use the version of the predicate shown in [Figure 4.2h.

Lemma 5.4.2. Assuming termination sensitive leakage equivalence under pem and
two trace prefives ay =y, a2, if one trace will not reach another barrier according
to Bumem. neither trace will produce any further leakage (inlined in [Preserve_mem.v,
mem_hypersim|).

Proof. Since we assume termination sensitive leakage equivalence, we have a; §chm 5 s
From this, we know that no matter how we extend the two trace prefixes, we can always
extend them further such that the new prefixes produce the same leakage. If one trace
can not reach another barrier, then by [Lemma 5.4. i, we know that its extension does
not contain any leakage-producing states. Thus, the extension has not produced any
further leakage.

Since the leakage of the extended prefixes must be the same and the leakage of the
original trace prefixes was the same, we conclude that the extension of the other trace
has also not produced any further leakage. This concludes the proof, as it holds for all
possible extensions of the trace prefixes. O

Lemma 5.4.3. If ay =, .., a2 and both traces will not produce any further leakage,
then for all by, by with iy —! aiby,is —, asby, we have aib; asby (inlined in
[Preserve_mem.v, mem_hypersim/).

_emem

Proof. Follows directly since neither b; nor by can produce any leakage. Thus, £ (a1b1) =
let(ar) = Ley(az) = Let(azbs). L]

To complete the proof, we again need to prove that =, . is still satisfied after a
hyperstep.

Theorem 5.4.4 [Preserve__mem.v, fence_preserve_mem|. (-)ence produces pro-
grams that satisfy termination sensitive speculative noninterference w.r.t. {yem-

Proof. We use the predicate described in with Bpem to show that =, _ |

=y and ~x¢pc form a hypersimulation.
[Lemma 5.4.2 and tLemma 5.4.j show that if we have related source trace prefixes and
at least one of them will not encounter another barrier, then the source relation will be
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5 Eager Insertion of Fences is Secure

satisfied at all future points. It follows from that the same must then be

true for the target traces.
Thus, it remains to show that =, ___ is still satisfied after a hyperstep, the proof of

which is analogous to that in [Theorem 5.2.&. O
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In the previous chapter, we have shown that our approach can be applied to a wider va-
riety of leakage models than the approach by Patrignani and Guarnieri [2021]. However,
their approach is also limited in a different way: Since speculative safety is an overap-
proximation of speculative noninterference, there are programs which are speculatively
noninterferent, but do not satisfy speculative safety. They demonstrate this with an
example program that has two branches, which both leak the same attacker-controlled
address. We have constructed a similar example in our language in [Figure 6.1.

read [1] #;if x > 0 then read [z] y else read [z] y end;write [1] y

Figure 6.1: Program that satisfies speculative noninterference, but not speculative
safety

The program takes a memory address as input from the attacker and performs a
check which triggers speculative execution, but it reads from that address and returns
the value independent of the result. The taint tracking used for speculative safety taints
the value in variable y as unsafe, as it was read speculatively from an attacker-controlled
address. Speculative safety is thus violated because an unsafe value is leaked during
speculative execution (when it is written to address 1).

However, this program is speculatively noninterferent without any mitigation applied:
The same observation that is produced during speculative execution is also produced
during nonspeculative execution. Therefore, if two traces can be distinguished, they
can also be distinguished without speculative execution.

As our approach does not use such an overapproximation, it can handle these cases.
To demonstrate this, we designed a relaxed mitigation that is still based on the insertion
of fence instructions, but can omit them if both branches produce the exact same
leakage. We will then prove that this mitigation produces speculatively noninterferent
programs in the constant-time leakage model.

6.1 Relaxed Insertion of Fences
To keep our mitigation simple, we rely purely on syntactical analysis. For every if state-

ment, we check whether both branches have the exact same sequence of read and
write statements within the speculation window. However, we also need to rule out
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leak-lookahead(0, p
leak-lookahead(n, |

[l

leak-lookahead(n, fence;

]
P
leak-lookahead(n, if ¢ then p; else p, end;p
P

1
1
1
leak-lookahead(n,while ¢ do p; finally p; end; 1
1

leak-lookahead(n, x :=

)
)
)
)
)
p) =
p) =

leak-lookahead(n, read [a ] = read z from a

. leak-lookahead(n — 1, p)
leak-lookahead(n,write [a] z;p) = write x to a
:: leak-lookahead(n — 1, p)
leak-lookahead(n, skip; p) = leak-lookahead(n — 1, p)

Figure 6.2: The leak-lookahead function [Mitigation.v, leak_lookahead]

any changes to the environment, so if we encounter any assign instructions, we still
insert a fence. We also rule out nested if statements, as these would require the anal-
ysis to be much more complex: inner branches would have to be checked for different
speculation window sizes, and rollbacks of inner nested speculative executions make the
general behaviour much more complex.

To keep the proofs simple, we also rule out fence instructions in the source pro-
gram as well as branches that end before the speculation window does. This way, we
only need to consider the two cases where speculative execution is either rolled back
immediately or will proceed to the end of the speculation window. Furthermore, if we
did not insert fence instructions for branches that end before the speculation window,
(]pl —H—pQDrelaxed = (]pl[)relaxed —H—(]p2[)relaxed would not hold.

For the syntactical analysis, we use the function leak-lookahead () This
function returns either a list of observations that will be produced during speculative
execution or L if it encounters any statements that force us to insert a fence. Note
that while we use the same notation, the observations produced here are not the same
as those produced by our leakage models: While the leakage models yield the actual
values at runtime, leak-lookahead yields expressions that will be compared syntactically.

The simulation relation once again relates a program in an environment to the com-
piled program in the same environment: (V | H | p) ~relaxed (L | V | H | (D)relaxed) :: []-

The synchronizer function sync,,,..q for this simulation is shown in . To
determine the number of steps needed for speculative execution in the case of if state-
ments, the function performs the same checks as during compilation to determine
whether fence instructions have been inserted. It then returns either 4 for an immedi-

ate rollback, or 18 for the execution of the entire speculation window and subsequent
rollback.
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(if ¢ then p; else py end; p)relaxed

if ¢ then (]plDrelaxed else (]p?[)relaxed end; (]pl)relaxed
if leak-lookahead(16, p1) = leak-lookahead(16, ps) # L

if ¢ then fence; (]plDrelaxed else fence; (]pQDrelaxed end; (]p[)relaxed
otherwise

(while ¢ do p; finally ps end; p))relaxed

while c do (]plDrelaxed finallY (]pQDrelaxed end; (]p[)relaxed
if leak-lookahead(16, p;) = leak-lookahead(16,py) # L

while ¢ do fence; (P1)relaxed £inally fence; (p2)relaxed €0d; (P)relaxed
otherwise

(55 D) relaxed = S; (D) relaxed otherwise

(] [] Drelaxed = []

Figure 6.3: Compilation function implementing our relaxed mitigation [Mitigation.v,
comp_relaxed]

18 if leak-lookahead(p;)
SYNC,ojaxed (V| H | 1f b then p; else py end;p)) = = leak-lookahead(ps) # L
4 otherwise

Syncrelaxed<<v | H ’ p>) =1 otherwise

Figure 6.4: Synchronizer function for ();elaxea [Mitigation.v, cr_sim_step]
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6 Relaxed Insertion of Fences is also Secure

To prove that ~,caxeq is indeed a simulation relation w.r.t. sync we need three

facts:

relaxed?

Lemma 6.1.1 [Mitigation.v, comp_relaxed_app].
(]CL + bDrelaxed = (]aDrelaxed "H'(]bl) relaxed

Proof. By induction. Note that this only works because we place fence instructions
for branches that are shorter than the speculation window, so that we do not need to
consider the code after an if statement. [

Lemma 6.1.2 [Mitigation.v, exec_no_nested_spec]|. If leak-lookahead(n,p) # L,
then executing n steps starting in {n |V | H | py::s::[] will result in the state s:[].

Proof. By induction. leak-lookahead(n,p) # L allows us to rule out nested speculation
as well as fence instructions, which would increase or decrease the number of steps
needed to reach s:[]. O

Lemma 6.1.3 [Mitigation.v, leak_extend].
leak-lookahead(n, p) = leak-lookahead(n, p +-[while ¢ do p; finally p, end])

Proof. Either, leak-lookahead(n,p) = L or leak-lookahead(n, p) = [ for some [. We prove
each case via induction on p. [

Lemma 6.1.4 [Mitigation.v, cr_sim_sync_correct]|. Xieaxed S a simulation rela-

tion w.r.t. SYNC,qlaxed -

Proof. We need to prove that if we start with states a ~qaxed @ and execute one step
on a and sync,.,..q(a) steps on «, we end up in states @’ and o with @’ ~elaxea @'

We show this by case distinction on the next instruction. For most statements, this
follows by [Lemma 6.1.1. For while statements, we additionally need . For
if statements, we have two options: If fence instructions were inserted. we can calcu-
late the next 4 steps immediately. If no fences were inserted, we apply [Lemma 6.1.5. 0

6.2 Speculative Noninterference under /.

To prove that () elaxea Preserves leakage equivalence, we again use the method described
in . We will use a hypersimulation using ~,elaxed and =y, as the target
relation, however, our source relation will additionally require that the last states of
each trace have the same program. This is, of course, guaranteed by the constant-time
leakage model as the traces execute in lockstep, however, we previously did not require
this explicitly. We will call this relation =,.

Also, we will not be using B, as before. Instead, we will use a barrier predicate that
is always true, meaning we will examine each step individually.

As every step is a barrier, we can use the predicate from : Proving that
every trace prefix can be extended to another barrier is trivial, as it only needs to be
extended by a single step.

We will start by proving that a single step in the nonspeculative semantics preserves

=rel-
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6.2 Speculative Noninterference under £

Lemma 6.2.1 [Preserve__ct_ relaxed.v, srcrel_step|. Forleakage equivalent traces
(iyns and (ig)ys, all trace prefizes (iiyns —t, a1 =1 and (i1)ys —L, ag = sy with
a; > 81 = G = Sz, and all states sy, s,y such that {ii)ns —', a1 > s; = s, and

(igyns =L, a9 > 89 =8, it must hold that a; = s1 > 8| =,¢ a9 > S = S).

Proof. We need to show that the new trace prefixes produce the same leakage, and that
the program is still equal in both traces.

o We can show that the programs in s} and s} are still equal by case distinction on
the program in s;, which is equal to that in sy by assumption. In all cases but the
if statement, the program of the following state is already uniquely determined
by the current program.

For the if statement, we use the fact that the leakage of a; = s; and as = s
includes which branch will be taken. As their leakage is the same by assumption,
we know that the same branch is taken. Thus, s} and s, will have the same
program.

o Like in previous proofs, we will use that we have assumed leakage equivalence of
the source traces. Thus, we only need to show that the two trace prefixes produce
the same amount of leakage.

By assumption, we know that a; > s; and as = ss have the same (and therefore
same amount of) leakage. Thus, we only need to show that s| and s/, either
both produce leakage, or both do not. This follows from the fact that they have
the same program, as there are no instructions that only sometimes produce an
observation.

]

We can now go on to proving that after the corresponding number of steps (as
indicated by sync,.ceq), the target trace prefixes still satisfy =,,. Unlike the proofs
presented previously, we can not conclude this directly from the source trace prefixes,
as source and target trace prefixes do not produce the same leakages in this example.

Instead, we use the fact that the trace prefixes before the current step satisfy =,_,, and
prove that that the leakage produced by this step is the same for both trace prefixes.

This relies on the following lemma:

Lemma 6.2.2 [Preserve_ ct_ relaxed.v, leak_lookahead_same_leakage|. If
leak-lookahead(16, p1) = leak-lookahead (16, py) # L, then executing 16 steps of (1)) relaxed
speculatively produces the same leakage as executing 15 steps of pa nonspeculatively.

Note that 16 steps of nonspeculative execution correspond to only 15 steps of non-
speculative execution as the 16th step is a rollback, which has no corresponding step in
the nonspeculative execution.

Proof. For the proof, we generalize the first parameter of leak-lookahead and prove that
if leak-lookahead(a,p;) = leak-lookahead(b + 1,ps) # L, executing a steps of (p1)relaxed
speculatively produces the same leakage as executing b steps of ps nonspeculatively. We
show this by induction on a and b:
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o If ais 0, then leak-lookahead(0, p;) = []. By induction on b, we find that the first
b + 1 instructions of py must all be skip, as no other sequence of instructions
would satisfy leak-lookahead(b + 1,ps) = []. No leakage is produced.

o Otherwise, if b is 0, then leak-lookahead(1, py) is either [] or contains exactly one
observation.

— If leak-lookahead(1, py) is [], we know (as before) that both p; and py only
execute skip instructions and no leakage will be produced.

— Otherwise, we consider the first statement of p;. If it produces no obser-
vation, we apply the inductive hypothesis for a. If it produces the same
observation as ps, we can show by induction that the remaining steps exe-
cuted in p; are all skip instructions and do not produce further leakage. If
it produces any other observation, we have a contradiction.

o If both a and b are greater than 0, we check the first statements of p; and ps:

— If the first statement of p; does not produce any leakage, we apply the
inductive hypothesis for a for the remainder of p;.

— Otherwise, if the first statement of ps does not produce any leakage, we
apply the inductive hypothesis for b.

— If both first statements produce the same leakage, we apply the induction
hypothesis for a for the remainder of p; and py. If they produce different
leakage, we have a contradiction.

]

With this, we can now prove that the target trace prefixes also satisfy =, .

Lemma 6.2.3 [Preserve__ct_ relaxed.v, srcrel_impl_tgtrel]. If=,, is preserved
for one step of the nonspeculative traces, then =y, is preserved after the corresponding
number of steps (according to syncC,y..eq) Of the speculative traces.

Proof. We know that the traces satisfied =, before, so we only need to look at the
newly added states. For most instructions, sync,...q 15 1, so we only have one state to
consider. That state will produce the exact same leakage as the corresponding source
state, so we can use the fact that the source trace prefixes satisty =, .

For if statements, there are two options: Either, there is a fence at the beginning of
both branches and 4 steps are taken, or there is no fence and 18 steps (the execution
of the if instruction plus 16 steps of speculative execution and the rollback) are taken.
In the first case, we can calculate these 4 steps, of which only the first will iroduce

leakage (fences and rollbacks do not). In the second case, we apply . [

Theorem 6.2.4 [Preserve_ ct_relaxed.v, relaxed_preserve_ct]. ()rclaxea P70-
duces programs that satisfy termination sensitive speculative noninterference w.r.t. fe.
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6.3 Further Relaxations and Applications

Proof. We use the predicate from . As every step is a barrier, we know that
every trace prefix will always reach another barrier in just one step.

We need to show that =, =4, and ~caxeq form a hypersimulation. This requires
us to show that =, and =,, are preserved, which follows from [Lemma 6.2.1 and
Lemma 6.2.3
Thus, we conclude that the target traces are leakage equivalent under ¢ as described
in Section 4.3. Il

6.3 Further Relaxations and Applications

As presented here, this mitigation is rather restricted. However, with further work, some
of these restrictions could be lifted: Manually inserted fences could be handled better
if a more general version of [Lemma 6.2.2 was shown. This would, for example, allow
manually placing fences as late as possible instead of at the beginning of a branch. It
should also be possible to lift the restrictions on short branches, leading to improvements
in more situations.

Additionally, one could look at optimizing certain cases. For example, while we need
to restrict changes to the environment to ensure equal expressions will yield equal ad-
dresses, we could allow changes that are not followed by leakage-producing instructions
within the speculation window. It might also be possible to incorporate results from
other techniques, such as alias analysis for equality of addresses, to further reduce the
number of fence instructions inserted.

Apart from being used on its own, such a mitigation could also be very useful in
conjunction with other strategies for inserting fences. This mitigation does not place
fences in ideal locations on its own, but it can verify (and fix) fences inserted previously
by the developer or some other automated method. As a result, more efficient mitiga-
tions could easily be created and verified without further proof work by combining an
unverified strategy for inserting fences with a subsequent pass of this mitigation.
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7 Speculative Load Hardening is
not Secure

We have shown that we can verify the mitigation proposed by [ntel [2018], the insertion
of fence instructions, even when we remove control flow from the leakage model. In this
chapter, we demonstrate why the same does not work for another popular mitigation,
Speculative Load Hardening [Carruth, 2018].

7.1 Modelling Speculative Load Hardening

Speculative Load Hardening works by introducing additional data dependencies be-
tween branch conditions and memory addresses. This is achieved by repeating the
same calculation as for the branch condition when calculating the address for a mem-
Ory access.

Since existing CPUs predict the outcome of the branch, not the outcome of the cal-
culation, the CPU may still start speculating; however, it can not execute the memory
access without fetching all the data for the branch condition to be evaluated properly.
This should be enough to trigger a rollback before the memory access happens, but if
it is not, the incorrect branch outcome in the calculation of the memory address will
yield some safe address that does not contain any secrets.

In £, we can model Speculative Load Hardening with a special variable _spec. This
variable will initially be 0, but it will be updated after every branch so that it will
only be 0 if the branch was taken correctly. This means that this variable will remain
0 throughout the nonspeculative execution, however, it will be 1 during speculative
execution. We can now protect all memory accesses by multiplying them with the
negation of this variable. During nonspeculative execution, this will be a multiplication
by 1 yielding the original address. However, during speculative execution, this will
always yield 0, which is part of the public heap and can safely be leaked.

The corresponding compilation function can be seen in .

7.2 Leaking Branch Outcomes through “Safe”
Memory Accesses

The issue lies in the supposedly safe memory accesses that occur if the execution is not
rolled back in time. While the data accessed is known to the attacker, if we consider a
leakage model that does not include branch outcomes, it is possible to leak those via
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protect(a) = a-!_spec

upd(e) = spec := spec +le

(read [a] z;p)sLn = read [protect(a)] z; (p)sLu
(write [a] z;p)sLu = write [protect(a)] x; (p)sLu
(if b then p; else py end;p)spy = if b then upd(d); (p1)sru

else upd(!b); (p2)sLu end; (p)ence
(while b do p; finally ps end;p)spy = while b do upd(b); (p1)sLu

finally upd(!d); (p2)sLu end; (p)scu
(s; pDsrr = s; (P)sLu otherwise

Figure 7.1: Speculative Load Hardening for £ [SLH.v, speculative load_hardening]

the number of memory accesses. Consider , where a program performs the
same memory access in both branches, but at different points. One of these lies within

the speculation window, whereas the other does not. Thus, when the attacker observes
a memory access at location 0 before the access at the proper address, they know which
branch was taken.

An example program is shown in . Here, the attacker is able to determine
whether the value stored at address —1 in the private heap is 0.

7.3 Implications of this Result

This counterexample does not necessarily demonstrate an issue with Speculative Load
Hardening. As mentioned in Section 7.@, the expectation is that a rollback will be
triggered before the memory access occurs. However, always-mispredict semantics
[Guarnieri et al), 2018] like we use here deliberately do not accurately model the CPU
and instead assume the worst possible behaviour.

It is therefore likely that the leak presented here would not occur on real hardware,
meaning that Speculative Load Hardening would in fact be secure even if the leakage
model does not include control flow. Proving so, however, would require semantics that
more accurately model the hardware in question, which would require that hardware
manufacturers guarantee certain behaviours. A promising approach in this direction
are hardware-software contracts as proposed by Guarnieri et al| [2021].

On the other hand, this example illustrates that developers working with constant-
time leakage models should adhere to them strictly. It might be tempting to look
at leakage that would occur through control flow, like the secret value in z in our
example, and decide to ignore it, thinking it would be too hard to exploit it in practice.
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7.3 Implications of this Result

1

BNl
BNl

(a) A memory access may be performed during (b) No memory access is encountered during
speculative execution. speculative execution.

Figure 7.2: Leaking control flow through the number of memory accesses. The dotted
line represents the flow of the execution, including misspeculation. On the
left hand side, a memory access is performed during speculative execution,
producing an additional observation. This allows an attacker to deduce that
the left branch was taken, as this can not occur if the right branch is taken.

However, our counterexample shows that such a leak could become easier to exploit
using speculative execution: in this case, if the attacker can not observe the control
flow directly, they can still infer which branch was taken via the memory accesses
performed. A mitigation that was not designed with this aspect in mind might no longer
offer sufficient protection in this case. We therefore recommend that developers adhere
strictly to the leakage models for which the mitigation they are using was designed.

37



7 Speculative Load Hardening is not Secure

38

pspy = read [—1] x;

if x

then
read [1] y;
skip;
skip;
skip

else
skip;
skip;
skip;
skip;
skip;
skip;
skip;
skip;
skip;
skip;
skip;
skip;
skip;
skip;
skip;
skip;
read [1] y

end

(a) Sample program

Hl = [—1 > 0] HQ = [—1 —> 1]

(b) Low-equivalent input heaps

Let a1, as be sufficiently long traces

<[] ’ Ha ’ pS’LH> _);s as, <[] ‘ Ho ’ pSLH> _>fls as.
gct(Ch) =read —1-read 1 -end---
gct<@2) =read —1 -read 1 -end- -

(c) Nonspeculative leakage

Let aq, ao be sufficiently long traces

A H | psmy =g a1, K Ha | psim) =4, aa

let(ay) =read —1-read 0 -read 1-end- -
ley(ag) =tTead —1 -read 1-end- - -

Figure 7.3: Sample program and two low-equivalent in-
put heaps. As shown on the right, the same
sequence of observations is produced by non-
speculative execution, but speculative execu-
tion produces different traces
[SLH.v, SLH_not_preserve_lm|.
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8 Conclusion

In this thesis, we have demonstrated that hypersimulations can be used to verify
compiler-based Spectre countermeasures. We have demonstrated that this approach
is more powerful than the previous method presented by Patrignani and Guarnieri

[2021] in several ways:

In , we have shown how hypersimulations can be used with leakage models

that do not include control flow by verifying Intel’s mitigation for three leakage models.
We have first confirmed previous results that the mitigation is secure under the widely
used constant-time leakage model. Then, we have loosened the restriction on control
flow by including only loop headers and not all branches in the leakage model. This
no longer enforced equal control flow, but it did still enforce that every trace prefix
can always be extended to produce more leakage. We were therefore able to prove that
Intel’s mitigation is also secure under this leakage model with only minimal adjustments
to the proof, whereas previous methods were not applicable to this leakage model at all.
Finally, we considered a leakage model that did not include any information on control
flow. This did require us to use a different method of showing the hypersimulation,
however, it was still not much more complex than the proof for the constant-time
leakage model.
In , we have designed and verified a mitigation that was not verifiable with
the previous approach. The main idea of the mitigation is that fences do not need to
be inserted if the leakage will be the same on both branches. This means that the
mitigated code does not necessarily satisfy speculative safety as defined by Patrignani
and Guarnieri [2021], however, we have shown that it is speculatively noninterferent for
the constant-time leakage model.

In , we demonstrated with a counterexample that we can not verify Spec-
ulative Load Hardening for leakage models that do not include control flow. With
Speculative Load Hardening, memory accesses during speculative execution still pro-
duce observations, which may allow an attacker to recover information on the control
flow. However, we expect that these observations are the result of always-mispredict
semantics overapproximating possible leakages, so Speculative Load Hardening could
be verified using semantics that model the CPU more accurately based on vendor guar-
antees.

8.1 Further Work

We have only demonstrated the approach with a very minimalistic language. Further
work is needed to apply this approach to more realistic languages. In particular, while
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8 Conclusion

modelling programs as lists of statements keeps proofs simple, a program-counter based
model with jump and branch instructions would be much more realistic.

While using specifically designed programming languages is already useful for ver-
ifying whether mitigations conceptually work, the goal should eventually be to ver-
ify implementations in real compilers. The most likely candidate for this would be
CompCert[Leroy], 2009], a verified C compiler which has formally defined semantics for
all intermediate steps, and simulations between them. To our knowledge, CompCert
does not currently have any Spectre mitigations. However, with some work having been
done to verify that it preserves constant-time leakage equivalence [Barthe et all, 2018§],
a verified mitigation seems to be a reasonable addition.

One aspect of the work of Patrignani and Guarnieri [2021] that we have not consid-
ered here is the ability to model control flow to and from attacker-provided code. In
their approach, the component being protected by the mitigation can both call attacker-
defined functions and have functions that can be called by the attacker. This would
be useful to protect libraries that might be linked against malicious code. Reason-
ing directly with hyperproperties instead of approximating with regular properties will
likely introduce additional complexity here, however, it should in principle be possible
assuming that the attacker behaves the same on traces it can not distinguish.

Another possibility is the use of different semantics for the target language. Our
approach does not require the use of an always-mispredict semantics, rather, any de-
terministic semantics can be used. While always-mispredict semantics can be used to
verify mitigations across a wide variety of hardware, modelling specific hardware more
accurately, for example based on hardware-software contracts [Guarnieri et al), 2021],
would also be useful and could allow more precise mitigations. On the other hand, the
always-mispredict semantics could also be extended to cover more sources of specula-
tion, and therefore more Spectre variants. Fabian et al, [2022] have shown how to define
such semantics in a modular way.

Finally, the mitigation designed in is very limited and, in its current state,
only serves as a proof of concept. Several potential improvements have already been
described in that chapter, however, they would be most useful if implemented for a
more realistic programming language. As mentioned before, a less restrictive version of
this mitigation could also be very useful as a second pass after some other strategy of
inserting fences, which then would not need to be verified.
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