
FSLH: Flexible Mechanized
Speculative Load Hardening FOR SECURITY AND PRIVACY

MAX PLANCK INSTITUTE

Jonathan Baumann1,2, Roberto Blanco1,3, Léon Ducruet1,4, Sebastian Harwig1,5, Cătălin Hrițcu¹
¹MPI-SP, Germany ²ENS Paris-Saclay, France ³TU/e, Netherlands ⁴ENS Lyon, France ⁵Ruhr University Bochum, Germany

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses

Selective SLH (Shivakumar et al. 2023)

• sparse protections:
low overhead

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses

Selective SLH (Shivakumar et al. 2023)

• sparse protections:
low overhead

• protects only cryptographic code

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses

Selective SLH (Shivakumar et al. 2023)

• sparse protections:
low overhead

• protects only cryptographic code

Ultimate SLH (Zhang et al. 2023)

• exhaustive protections:
high overhead

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses

Selective SLH (Shivakumar et al. 2023)

• sparse protections:
low overhead

• protects only cryptographic code

Ultimate SLH (Zhang et al. 2023)

• exhaustive protections:
high overhead

• protects all programs

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses

Selective SLH (Shivakumar et al. 2023)

• sparse protections:
low overhead

• protects only cryptographic code

Ultimate SLH (Zhang et al. 2023)

• exhaustive protections:
high overhead

• protects all programs

• Existing mitigations rely on manual security proofs

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses

Selective SLH (Shivakumar et al. 2023)

• sparse protections:
low overhead

• protects only cryptographic code

Ultimate SLH (Zhang et al. 2023)

• exhaustive protections:
high overhead

• protects all programs

• Existing mitigations rely on manual security proofs
‣ First machine-checked proofs for Selective, Ultimate, and Flexible SLH

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses

Selective SLH (Shivakumar et al. 2023)

• sparse protections:
low overhead

• protects only cryptographic code

Ultimate SLH (Zhang et al. 2023)

• exhaustive protections:
high overhead

• protects all programs

• Existing mitigations rely on manual security proofs
‣ First machine-checked proofs for Selective, Ultimate, and Flexible SLH

Rocq development: ~ 4300 lines

1 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then
 j <- a1[i];
 x <- a2[j]

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then
 j <- a1[i];
 x <- a2[j]

Leaks j via the address

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then
 j <- a1[i];
 x <- if j == 0 then ...

Leaks j via control flow

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then
 j <- a1[i];
 x <- if j == 0 then ...

Leaks j via control flow

Ensures i is in-bounds for a public array

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then
 j <- a1[i];
 x <- if j == 0 then ...

Leaks j via control flow

Ensures i is in-bounds for a public array

Bypassed speculatively

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then
 j <- a1[i];
 x <- if j == 0 then ...

Leaks j via control flow

Ensures i is in-bounds for a public array

Bypassed speculatively

May speculatively read secret data

2 / 12

Speculative Load Hardening (Carruth 2018) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then

 j <- a1[i];
 x <- a2[j]
else

Mitigation introduced in LLVM

3 / 12

Speculative Load Hardening (Carruth 2018) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then
 b := (i < a1_size) ? b : 1;
 j <- a1[i];
 x <- a2[j]
else
 b := (i < a1_size) ? 1 : b;

protected variable stores misspeculation flag

Mitigation introduced in LLVM
• keep track of misspeculation

3 / 12

Speculative Load Hardening (Carruth 2018) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then
 b := (i < a1_size) ? b : 1;
 j <- a1[i];
 x <- a2[j]
else
 b := (i < a1_size) ? 1 : b;

protected variable stores misspeculation flag
updated using constant-time conditional

Mitigation introduced in LLVM
• keep track of misspeculation

3 / 12

Speculative Load Hardening (Carruth 2018) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then
 b := (i < a1_size) ? b : 1;
 j <- a1[i];
 x <- a2[j]
else
 b := (i < a1_size) ? 1 : b;

protected variable stores misspeculation flag
updated using constant-time conditional

Mitigation introduced in LLVM
• keep track of misspeculation
• prevent speculative leaks

3 / 12

Speculative Load Hardening (Carruth 2018) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then
 b := (i < a1_size) ? b : 1;
 j <- a1[b == 1 ? 0 : i];
 x <- a2[b == 1 ? 0 : j]
else
 b := (i < a1_size) ? 1 : b;

protected variable stores misspeculation flag
updated using constant-time conditional

masks index

Mitigation introduced in LLVM
• keep track of misspeculation
• prevent speculative leaks
‣ iSLH: mask indices of loads

3 / 12

Speculative Load Hardening (Carruth 2018) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

if i < a1_size then
 b := (i < a1_size) ? b : 1;
 j <- b == 1 ? 0 : a[i];
 x <- b == 1 ? 0 : a[j]
else
 b := (i < a1_size) ? 1 : b;

protected variable stores misspeculation flag
updated using constant-time conditional

masks value

Mitigation introduced in LLVM
• keep track of misspeculation
• prevent speculative leaks
‣ iSLH: mask indices of loads
‣ vSLH: mask loaded values

3 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

4 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

CCT discipline

4 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

CCT discipline

• variables and arrays are statically
labeled public or secret

4 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

CCT discipline

• variables and arrays are statically
labeled public or secret

• all branch conditions and indices
must be public

4 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

CCT discipline

• variables and arrays are statically
labeled public or secret

• all branch conditions and indices
must be public

• prevents sequential leakage of
secrets

4 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

• selectively masks loads into public
variables

CCT discipline

• variables and arrays are statically
labeled public or secret

• all branch conditions and indices
must be public

• prevents sequential leakage of
secrets

4 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

• selectively masks loads into public
variables
‣ loads to secret variables are known

not to leak

CCT discipline

• variables and arrays are statically
labeled public or secret

• all branch conditions and indices
must be public

• prevents sequential leakage of
secrets

4 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

• selectively masks loads into public
variables
‣ loads to secret variables are known

not to leak
• enforces SCT security

CCT discipline

• variables and arrays are statically
labeled public or secret

• all branch conditions and indices
must be public

• prevents sequential leakage of
secrets

4 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

• selectively masks loads into public
variables
‣ loads to secret variables are known

not to leak
• enforces SCT security

SCT security

𝑠1 ∼�𝑃 𝑠2 ∧ ⟨𝑐, 𝑠1, 𝕗⟩ →→→→
𝒪1

𝒟 S* ⋅

∧ ⟨𝑐, 𝑠2, 𝕗⟩ →→→→
𝒪2

𝒟 S* ⋅ ⇒ 𝒪1 = 𝒪2

4 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

• selectively masks loads into public
variables
‣ loads to secret variables are known

not to leak
• enforces SCT security

SCT security

𝑠1 ∼�𝑃 𝑠2 ∧ ⟨𝑐, 𝑠1, 𝕗⟩ →→→→
𝒪1

𝒟 S* ⋅

∧ ⟨𝑐, 𝑠2, 𝕗⟩ →→→→
𝒪2

𝒟 S* ⋅ ⇒ 𝒪1 = 𝒪2

initial states agree on public variables

4 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

• selectively masks loads into public
variables
‣ loads to secret variables are known

not to leak
• enforces SCT security

SCT security

𝑠1 ∼�𝑃 𝑠2 ∧ ⟨𝑐, 𝑠1, 𝕗⟩ →→→→
𝒪1

𝒟 S* ⋅

∧ ⟨𝑐, 𝑠2, 𝕗⟩ →→→→
𝒪2

𝒟 S* ⋅ ⇒ 𝒪1 = 𝒪2

initial states agree on public variables

executions with equal
attacker directives

4 / 12

SSLH: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• only protects programs in the CCT
discipline

• selectively masks loads into public
variables
‣ loads to secret variables are known

not to leak
• enforces SCT security

SCT security

𝑠1 ∼�𝑃 𝑠2 ∧ ⟨𝑐, 𝑠1, 𝕗⟩ →→→→
𝒪1

𝒟 S* ⋅

∧ ⟨𝑐, 𝑠2, 𝕗⟩ →→→→
𝒪2

𝒟 S* ⋅ ⇒ 𝒪1 = 𝒪2

initial states agree on public variables

executions with equal
attacker directives

produce equal observations

4 / 12

USLH: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• masks all sources of leakage,
always

5 / 12

USLH: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• masks all sources of leakage,
always
‣ loads, stores, branch conditions

5 / 12

USLH: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• masks all sources of leakage,
always
‣ loads, stores, branch conditions
‣ also masks many other leaking

instructions

5 / 12

USLH: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• masks all sources of leakage,
always
‣ loads, stores, branch conditions
‣ also masks many other leaking

instructions
• enforces Relative Security

5 / 12

USLH: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• masks all sources of leakage,
always
‣ loads, stores, branch conditions
‣ also masks many other leaking

instructions
• enforces Relative Security

Relative Security

(∀𝒪1𝒪2. ⟨𝑐, 𝑠1⟩ →→→→
𝒪1

* ⋅

∧ ⟨𝑐, 𝑠2⟩ →→→→
𝒪2

* ⋅ ⇒ 𝒪1 ≶ 𝒪2)

⇒ (∀𝒪1𝒪2𝒟. ⟨⦅𝑐⦆, 𝑠1, 𝕗⟩ →→→→
𝒪1

𝒟 S* ⋅

∧ ⟨⦅𝑐⦆, 𝑠2, 𝕗⟩ →→→→
𝒪2

𝒟 S* ⋅ ⇒ 𝒪1 = 𝒪2)

5 / 12

USLH: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• masks all sources of leakage,
always
‣ loads, stores, branch conditions
‣ also masks many other leaking

instructions
• enforces Relative Security

Relative Security

(∀𝒪1𝒪2. ⟨𝑐, 𝑠1⟩ →→→→
𝒪1

* ⋅

∧ ⟨𝑐, 𝑠2⟩ →→→→
𝒪2

* ⋅ ⇒ 𝒪1 ≶ 𝒪2)

⇒ (∀𝒪1𝒪2𝒟. ⟨⦅𝑐⦆, 𝑠1, 𝕗⟩ →→→→
𝒪1

𝒟 S* ⋅

∧ ⟨⦅𝑐⦆, 𝑠2, 𝕗⟩ →→→→
𝒪2

𝒟 S* ⋅ ⇒ 𝒪1 = 𝒪2)

5 / 12

USLH: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• masks all sources of leakage,
always
‣ loads, stores, branch conditions
‣ also masks many other leaking

instructions
• enforces Relative Security

Relative Security

(∀𝒪1𝒪2. ⟨𝑐, 𝑠1⟩ →→→→
𝒪1

* ⋅

∧ ⟨𝑐, 𝑠2⟩ →→→→
𝒪2

* ⋅ ⇒ 𝒪1 ≶ 𝒪2)

⇒ (∀𝒪1𝒪2𝒟. ⟨⦅𝑐⦆, 𝑠1, 𝕗⟩ →→→→
𝒪1

𝒟 S* ⋅

∧ ⟨⦅𝑐⦆, 𝑠2, 𝕗⟩ →→→→
𝒪2

𝒟 S* ⋅ ⇒ 𝒪1 = 𝒪2)

5 / 12

USLH: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• masks all sources of leakage,
always
‣ loads, stores, branch conditions
‣ also masks many other leaking

instructions
• enforces Relative Security

Relative Security

(∀𝒪1𝒪2. ⟨𝑐, 𝑠1⟩ →→→→
𝒪1

* ⋅

∧ ⟨𝑐, 𝑠2⟩ →→→→
𝒪2

* ⋅ ⇒ 𝒪1 ≶ 𝒪2)

⇒ (∀𝒪1𝒪2𝒟. ⟨⦅𝑐⦆, 𝑠1, 𝕗⟩ →→→→
𝒪1

𝒟 S* ⋅

∧ ⟨⦅𝑐⦆, 𝑠2, 𝕗⟩ →→→→
𝒪2

𝒟 S* ⋅ ⇒ 𝒪1 = 𝒪2)

sequential executions

5 / 12

USLH: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• masks all sources of leakage,
always
‣ loads, stores, branch conditions
‣ also masks many other leaking

instructions
• enforces Relative Security

Relative Security

(∀𝒪1𝒪2. ⟨𝑐, 𝑠1⟩ →→→→
𝒪1

* ⋅

∧ ⟨𝑐, 𝑠2⟩ →→→→
𝒪2

* ⋅ ⇒ 𝒪1 ≶ 𝒪2)

⇒ (∀𝒪1𝒪2𝒟. ⟨⦅𝑐⦆, 𝑠1, 𝕗⟩ →→→→
𝒪1

𝒟 S* ⋅

∧ ⟨⦅𝑐⦆, 𝑠2, 𝕗⟩ →→→→
𝒪2

𝒟 S* ⋅ ⇒ 𝒪1 = 𝒪2)

sequential executions

equal observations

5 / 12

USLH: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• masks all sources of leakage,
always
‣ loads, stores, branch conditions
‣ also masks many other leaking

instructions
• enforces Relative Security

Relative Security

(∀𝒪1𝒪2. ⟨𝑐, 𝑠1⟩ →→→→
𝒪1

* ⋅

∧ ⟨𝑐, 𝑠2⟩ →→→→
𝒪2

* ⋅ ⇒ 𝒪1 ≶ 𝒪2)

⇒ (∀𝒪1𝒪2𝒟. ⟨⦅𝑐⦆, 𝑠1, 𝕗⟩ →→→→
𝒪1

𝒟 S* ⋅

∧ ⟨⦅𝑐⦆, 𝑠2, 𝕗⟩ →→→→
𝒪2

𝒟 S* ⋅ ⇒ 𝒪1 = 𝒪2)

sequential executions

equal observations

speculative executions

5 / 12

USLH: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• masks all sources of leakage,
always
‣ loads, stores, branch conditions
‣ also masks many other leaking

instructions
• enforces Relative Security

Relative Security

(∀𝒪1𝒪2. ⟨𝑐, 𝑠1⟩ →→→→
𝒪1

* ⋅

∧ ⟨𝑐, 𝑠2⟩ →→→→
𝒪2

* ⋅ ⇒ 𝒪1 ≶ 𝒪2)

⇒ (∀𝒪1𝒪2𝒟. ⟨⦅𝑐⦆, 𝑠1, 𝕗⟩ →→→→
𝒪1

𝒟 S* ⋅

∧ ⟨⦅𝑐⦆, 𝑠2, 𝕗⟩ →→→→
𝒪2

𝒟 S* ⋅ ⇒ 𝒪1 = 𝒪2)

sequential executions

equal observations

speculative executions
equal observations

5 / 12

The Best of Both Worlds: Flexible SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

• selectively protects
secret inputs

FSLH USLH

6 / 12

The Best of Both Worlds: Flexible SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

• selectively protects
secret inputs
‣ 80% less masking

FSLH USLH

6 / 12

The Best of Both Worlds: Flexible SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

• selectively protects
secret inputs
‣ 80% less masking

FSLH USLH

• protects all inputs

6 / 12

The Best of Both Worlds: Flexible SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

• selectively protects
secret inputs
‣ 80% less masking

FSLH USLH

• protects all inputs
‣ high overhead

(150%)

6 / 12

The Best of Both Worlds: Flexible SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

• selectively protects
secret inputs
‣ 80% less masking

FSLH

• selectively
protects secret
inputs

USLH

• protects all inputs
‣ high overhead

(150%)

6 / 12

The Best of Both Worlds: Flexible SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

• selectively protects
secret inputs
‣ 80% less masking

• applies only to CCT-
discipline

FSLH

• selectively
protects secret
inputs

USLH

• protects all inputs
‣ high overhead

(150%)

6 / 12

The Best of Both Worlds: Flexible SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

• selectively protects
secret inputs
‣ 80% less masking

• applies only to CCT-
discipline
‣ enforces SCT security

FSLH

• selectively
protects secret
inputs

USLH

• protects all inputs
‣ high overhead

(150%)

6 / 12

The Best of Both Worlds: Flexible SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

• selectively protects
secret inputs
‣ 80% less masking

• applies only to CCT-
discipline
‣ enforces SCT security

FSLH

• selectively
protects secret
inputs

USLH

• protects all inputs
‣ high overhead

(150%)
• protects arbitrary

programs

6 / 12

The Best of Both Worlds: Flexible SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

• selectively protects
secret inputs
‣ 80% less masking

• applies only to CCT-
discipline
‣ enforces SCT security

FSLH

• selectively
protects secret
inputs

USLH

• protects all inputs
‣ high overhead

(150%)
• protects arbitrary

programs
‣ enforces relative

security

6 / 12

The Best of Both Worlds: Flexible SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

• selectively protects
secret inputs
‣ 80% less masking

• applies only to CCT-
discipline
‣ enforces SCT security

FSLH

• selectively
protects secret
inputs

• protects arbitrary
programs
‣ enforces relative

security

USLH

• protects all inputs
‣ high overhead

(150%)
• protects arbitrary

programs
‣ enforces relative

security

6 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

tracking misspeculation

7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

parametric masking of conditions

7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒 parametric masking of read indices

7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

parametric masking of write indices
7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be

7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be

⟦𝑖⟧𝚇
rd =̇ 𝚋 == 1? 0 : 𝑖

7 / 12

iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be

⟦𝑖⟧𝚇
rd =̇ 𝚋 == 1? 0 : 𝑖

⟦𝑖⟧𝑒
wr =̇ 𝚋 == 1? 0 : 𝑖

7 / 12

Flexible index SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be

⟦𝑖⟧𝚇
rd =̇ 𝚋 == 1? 0 : 𝑖

⟦𝑖⟧𝑒
wr =̇ 𝚋 == 1? 0 : 𝑖

FSLH

⟦be⟧𝔹 =̇

⟦𝑖⟧𝚇
rd =̇

⟦𝑖⟧𝑒
wr =̇

8 / 12

Flexible index SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be

⟦𝑖⟧𝚇
rd =̇ 𝚋 == 1? 0 : 𝑖

⟦𝑖⟧𝑒
wr =̇ 𝚋 == 1? 0 : 𝑖

FSLH

⟦be⟧𝔹 =̇ {𝚋 == 0&& be

⟦𝑖⟧𝚇
rd =̇

⟦𝑖⟧𝑒
wr =̇

8 / 12

Flexible index SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be

⟦𝑖⟧𝚇
rd =̇ 𝚋 == 1? 0 : 𝑖

⟦𝑖⟧𝑒
wr =̇ 𝚋 == 1? 0 : 𝑖

FSLH

⟦be⟧𝔹 =̇ {𝚋 == 0&& be if ¬𝑃(be)
be otherwise

⟦𝑖⟧𝚇
rd =̇

⟦𝑖⟧𝑒
wr =̇

8 / 12

Flexible index SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be

⟦𝑖⟧𝚇
rd =̇ 𝚋 == 1? 0 : 𝑖

⟦𝑖⟧𝑒
wr =̇ 𝚋 == 1? 0 : 𝑖

FSLH

⟦be⟧𝔹 =̇ {𝚋 == 0&& be if ¬𝑃(be)
be otherwise

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

8 / 12

Flexible index SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be

⟦𝑖⟧𝚇
rd =̇ 𝚋 == 1? 0 : 𝑖

⟦𝑖⟧𝑒
wr =̇ 𝚋 == 1? 0 : 𝑖

FSLH

⟦be⟧𝔹 =̇ {𝚋 == 0&& be if ¬𝑃(be)
be otherwise

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡) ∨ ¬𝑃(𝑖)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒) ∨ ¬𝑃(𝑖)

𝑖 otherwise

8 / 12

Flexible index SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be

⟦𝑖⟧𝚇
rd =̇ 𝚋 == 1? 0 : 𝑖

⟦𝑖⟧𝑒
wr =̇ 𝚋 == 1? 0 : 𝑖

FSLH

⟦be⟧𝔹 =̇ {𝚋 == 0&& be if ¬𝑃(be)
be otherwise

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡) ∨ ¬𝑃(𝑖)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒) ∨ ¬𝑃(𝑖)

𝑖 otherwise

8 / 12

Flexible index SLH FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be

⟦𝑖⟧𝚇
rd =̇ 𝚋 == 1? 0 : 𝑖

⟦𝑖⟧𝑒
wr =̇ 𝚋 == 1? 0 : 𝑖

FSLH

⟦be⟧𝔹 =̇ {𝚋 == 0&& be if ¬𝑃(be)
be otherwise

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡) ∨ ¬𝑃(𝑖)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒) ∨ ¬𝑃(𝑖)

𝑖 otherwise

8 / 12

Protecting All Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Simplest formalisation: standard IFC type system (Volpano, Irvine, and Smith 1996)

9 / 12

Protecting All Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Simplest formalisation: standard IFC type system (Volpano, Irvine, and Smith 1996)
⚠ keeps the security levels of variables fixed, so not all programs are well-typed

9 / 12

Protecting All Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Simplest formalisation: standard IFC type system (Volpano, Irvine, and Smith 1996)
⚠ keeps the security levels of variables fixed, so not all programs are well-typed

• Complete protection: Flow-sensitive static analysis (Hunt and Sands 2006)

9 / 12

Protecting All Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Simplest formalisation: standard IFC type system (Volpano, Irvine, and Smith 1996)
⚠ keeps the security levels of variables fixed, so not all programs are well-typed

• Complete protection: Flow-sensitive static analysis (Hunt and Sands 2006)
‣ Given initial labeling, compute a final labeling

9 / 12

Protecting All Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Simplest formalisation: standard IFC type system (Volpano, Irvine, and Smith 1996)
⚠ keeps the security levels of variables fixed, so not all programs are well-typed

• Complete protection: Flow-sensitive static analysis (Hunt and Sands 2006)
‣ Given initial labeling, compute a final labeling
‣ Overapproximation:

9 / 12

Protecting All Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Simplest formalisation: standard IFC type system (Volpano, Irvine, and Smith 1996)
⚠ keeps the security levels of variables fixed, so not all programs are well-typed

• Complete protection: Flow-sensitive static analysis (Hunt and Sands 2006)
‣ Given initial labeling, compute a final labeling
‣ Overapproximation:

– join after branches

9 / 12

Protecting All Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Simplest formalisation: standard IFC type system (Volpano, Irvine, and Smith 1996)
⚠ keeps the security levels of variables fixed, so not all programs are well-typed

• Complete protection: Flow-sensitive static analysis (Hunt and Sands 2006)
‣ Given initial labeling, compute a final labeling
‣ Overapproximation:

– join after branches
– fixpoint for loops

9 / 12

Protecting All Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Simplest formalisation: standard IFC type system (Volpano, Irvine, and Smith 1996)
⚠ keeps the security levels of variables fixed, so not all programs are well-typed

• Complete protection: Flow-sensitive static analysis (Hunt and Sands 2006)
‣ Given initial labeling, compute a final labeling
‣ Overapproximation:

– join after branches
– fixpoint for loops

‣ Annotate program with security levels of expressions

9 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

Sequential executions producing equal observations

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

Sequential executions producing equal observations

corresponding
speculative executions

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

Sequential executions producing equal observations

corresponding
speculative executions

should also produce equal observations

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

Ideal Semantics (Shivakumar et al. 2023):
• Speculative execution of unmitigated program
• Masking implemented in semantics

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

Ideal Semantics (Shivakumar et al. 2023):
• Speculative execution of unmitigated program
• Masking implemented in semantics

Backwards Compiler Correctness
w.r.t. ideal semantics

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

⟨𝑐, 𝑠2, 𝕗⟩

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

⟨𝑐, 𝑠2, 𝕗⟩

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1 ⋅ branch 𝑏1 ⋅ 𝒪‴

1

step* ⋅ force ⋅ 𝒟‴

𝒪′
2 ⋅ branch 𝑏2 ⋅ 𝒪‴

2

step* ⋅ force ⋅ 𝒟‴

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

⟨𝑐, 𝑠2, 𝕗⟩

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

step*

𝒪′
2

step*

force

branch 𝑏1 𝒪″
1

𝒟″

force

branch 𝑏2 𝒪″
2

𝒟″

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

⟨𝑐, 𝑠2, 𝕗⟩

⟨𝑐′, 𝑠1′⟩

⟨𝑐′, 𝑠2′⟩

⟨𝑐′, 𝑠′
1, 𝕗⟩ ⟨𝑐″, 𝑠″

1 , 𝕥⟩

⟨𝑐′, 𝑠′
2, 𝕗⟩ ⟨𝑐″, 𝑠″

2 , 𝕥⟩

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

step*

𝒪′
2

step*

force

branch 𝑏1 𝒪″
1

𝒟″

force

branch 𝑏2 𝒪″
2

𝒟″

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

⟨𝑐, 𝑠2, 𝕗⟩

⟨𝑐′, 𝑠1′⟩

⟨𝑐′, 𝑠2′⟩

⟨𝑐′, 𝑠′
1, 𝕗⟩ ⟨𝑐″, 𝑠″

1 , 𝕥⟩

⟨𝑐′, 𝑠′
2, 𝕗⟩ ⟨𝑐″, 𝑠″

2 , 𝕥⟩

Same as sequential execution

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

step*

𝒪′
2

step*

force

branch 𝑏1 𝒪″
1

𝒟″

force

branch 𝑏2 𝒪″
2

𝒟″

branch ¬𝑏1

branch ¬𝑏2

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

⟨𝑐, 𝑠2, 𝕗⟩

⟨𝑐′, 𝑠1′⟩

⟨𝑐′, 𝑠2′⟩

⟨𝑐′, 𝑠′
1, 𝕗⟩ ⟨𝑐″, 𝑠″

1 , 𝕥⟩

⟨𝑐′, 𝑠′
2, 𝕗⟩ ⟨𝑐″, 𝑠″

2 , 𝕥⟩

Opposite branch as
sequential execution

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

step*

𝒪′
2

step*

force

branch 𝑏1 𝒪″
1

𝒟″

force

branch 𝑏2 𝒪″
2

𝒟″

branch ¬𝑏1

branch ¬𝑏2

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

⟨𝑐, 𝑠2, 𝕗⟩

⟨𝑐′, 𝑠1′⟩

⟨𝑐′, 𝑠2′⟩

⟨𝑐′, 𝑠′
1, 𝕗⟩ ⟨𝑐″, 𝑠″

1 , 𝕥⟩

⟨𝑐′, 𝑠′
2, 𝕗⟩ ⟨𝑐″, 𝑠″

2 , 𝕥⟩

Unwinding:
Observations depend only on directives

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

step*

𝒪′
2

step*

force

branch 𝑏1 𝒪″
1

𝒟″

force

branch 𝑏2 𝒪″
2

𝒟″

branch ¬𝑏1

branch ¬𝑏2

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

⟨𝑐, 𝑠2, 𝕗⟩

⟨𝑐′, 𝑠1′⟩

⟨𝑐′, 𝑠2′⟩

⟨𝑐′, 𝑠′
1, 𝕗⟩ ⟨𝑐″, 𝑠″

1 , 𝕥⟩

⟨𝑐′, 𝑠′
2, 𝕗⟩ ⟨𝑐″, 𝑠″

2 , 𝕥⟩

Unwinding:
Observations depend only on directives
• public values are equal

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

step*

𝒪′
2

step*

force

branch 𝑏1 𝒪″
1

𝒟″

force

branch 𝑏2 𝒪″
2

𝒟″

branch ¬𝑏1

branch ¬𝑏2

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

⟨𝑐, 𝑠2, 𝕗⟩

⟨𝑐′, 𝑠1′⟩

⟨𝑐′, 𝑠2′⟩

⟨𝑐′, 𝑠′
1, 𝕗⟩ ⟨𝑐″, 𝑠″

1 , 𝕥⟩

⟨𝑐′, 𝑠′
2, 𝕗⟩ ⟨𝑐″, 𝑠″

2 , 𝕥⟩

Unwinding:
Observations depend only on directives
• public values are equal
• secret values are masked

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

step*

𝒪′
2

step*

force

branch 𝑏1 𝒪″
1

𝒟″

force

branch 𝑏2 𝒪″
2

𝒟″

branch ¬𝑏1

branch ¬𝑏2

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

⟨𝑐, 𝑠2, 𝕗⟩

⟨𝑐′, 𝑠1′⟩

⟨𝑐′, 𝑠2′⟩

⟨𝑐′, 𝑠′
1, 𝕗⟩ ⟨𝑐″, 𝑠″

1 , 𝕥⟩

⟨𝑐′, 𝑠′
2, 𝕗⟩ ⟨𝑐″, 𝑠″

2 , 𝕥⟩

Unwinding:
Observations depend only on directives
• public values are equal
• secret values are masked

preserves well-typedness

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

𝒪′
1

step*

𝒪′
2

step*

force

branch 𝑏1 𝒪″
1

𝒟″

force

branch 𝑏2 𝒪″
2

𝒟″

branch ¬𝑏1

branch ¬𝑏2

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

ideal

⟨𝑐, 𝑠1, 𝕗⟩

⟨𝑐, 𝑠2, 𝕗⟩

⟨𝑐′, 𝑠1′⟩

⟨𝑐′, 𝑠2′⟩

⟨𝑐′, 𝑠′
1, 𝕗⟩ ⟨𝑐″, 𝑠″

1 , 𝕥⟩

⟨𝑐′, 𝑠′
2, 𝕗⟩ ⟨𝑐″, 𝑠″

2 , 𝕥⟩

Unwinding:
Observations depend only on directives
• public values are equal
• secret values are masked

preserves well-labeledness
of annotated program

10 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Flexible SLH combines the benefits of Selective and Ultimate SLH

11 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Flexible SLH combines the benefits of Selective and Ultimate SLH
‣ same level of protection as USLH

11 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Flexible SLH combines the benefits of Selective and Ultimate SLH
‣ same level of protection as USLH
‣ no overhead compared to SSLH on constant-time code

11 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Flexible SLH combines the benefits of Selective and Ultimate SLH
‣ same level of protection as USLH
‣ no overhead compared to SSLH on constant-time code

• First machine-checked proofs of SLH mitigations

11 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Flexible SLH combines the benefits of Selective and Ultimate SLH
‣ same level of protection as USLH
‣ no overhead compared to SSLH on constant-time code

• First machine-checked proofs of SLH mitigations
‣ proofs of SSLH and USLH obtained as corollaries

11 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH
‣ at what level should analysis be performed?

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH
‣ at what level should analysis be performed?
‣ preservation by other compilation passes?

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH
‣ at what level should analysis be performed?
‣ preservation by other compilation passes?

• Investigation of other LLVM SLH implementations

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH
‣ at what level should analysis be performed?
‣ preservation by other compilation passes?

• Investigation of other LLVM SLH implementations
‣ too much complexity for fully mechanized proofs

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH
‣ at what level should analysis be performed?
‣ preservation by other compilation passes?

• Investigation of other LLVM SLH implementations
‣ too much complexity for fully mechanized proofs
‣ Property-based testing as a pragmatic compromise

12 / 12

Bibliography FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

Carruth, Chandler. 2018. “Speculative Load Hardening: A Spectre Variant #1 Mitigation
Technique”. September 2018. https://llvm.org/docs/SpeculativeLoadHardening.
html.

Hunt, Sebastian, and David Sands. 2006. “On Flow-Sensitive Security Types”. In
Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2006, Charleston, South Carolina, USA, January
11-13, 2006, edited by J. Gregory Morrisett and Simon L. Peyton Jones, 79–90.
ACM. https://doi.org/10.1145/1111037.1111045.

Shivakumar, Basavesh Ammanaghatta, Jack Barnes, Gilles Barthe, Sunjay Cauligi,
Chitchanok Chuengsatiansup, Daniel Genkin, Sioli O'Connell, Peter Schwabe, Rui Qi
Sim, and Yuval Yarom. 2023. “Spectre Declassified: Reading from the Right Place
at the Wrong Time”. In 44th IEEE Symposium on Security and Privacy, SP, 1753–70.
IEEE. https://doi.org/10.1109/SP46215.2023.10179355.

13 / 12

https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://doi.org/10.1145/1111037.1111045
https://doi.org/10.1109/SP46215.2023.10179355

Bibliography FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

Volpano, Dennis M., Cynthia E. Irvine, and Geoffrey Smith. 1996. “A Sound Type
System for Secure Flow Analysis”. J. Comput. Secur. 4 (2/3): 167–88. https://doi.
org/10.3233/JCS-1996-42-304.

Zhang, Zhiyuan, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, and
Yuval Yarom. 2023. “Ultimate SLH: Taking Speculative Load Hardening to the Next
Level”. In 32nd USENIX Security Symposium, edited by Joseph A. Calandrino and
Carmela Troncoso, 7125–42. USENIX Association. https://www.usenix.org/
conference/usenixsecurity23/presentation/zhang-zhiyuan-slh.

14 / 12

https://doi.org/10.3233/JCS-1996-42-304
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh

Speculative Semantics FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

15 / 12

IFC type system FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

16 / 12

Ideal Semantics (IFC) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

17 / 12

Ideal Semantics (annotated programs) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

18 / 12

Flow-sensitive static analysis FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

19 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

20 / 12

iSLH must protect stores FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

 if i < secrets_size then
 secrets[i] <- key;
 x <- a[0];
 if x then...

• out-of-bounds i could write to a[0]
• read from public array a is unprotected
‣ reads speculatively stored secret

21 / 12

	Why FSLH?
	Spectre (v1)
	Speculative Load Hardening
	SSLH: Selective SLH
	USLH: Ultimate SLH
	The Best of Both Worlds: Flexible SLH
	iSLH Master Recipe
	Flexible index SLH
	Protecting All Programs
	Proving Relative Security
	Conclusions
	Future Work
	Bibliography
	Speculative Semantics
	IFC type system
	Ideal Semantics (IFC)
	Ideal Semantics (annotated programs)
	Flow-sensitive static analysis
	Well-Labeledness
	iSLH must protect stores

