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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

tracking misspeculation
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

parametric masking of conditions
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒 parametric masking of read indices
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

parametric masking of write indices
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇
rd]

⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒
wr] ← 𝑒

SSLH

⟦be⟧𝔹 =̇ be

⟦𝑖⟧𝚇
rd =̇ {𝚋 == 1? 0 : 𝑖 if 𝑃 (𝚡)

𝑖 otherwise

⟦𝑖⟧𝑒
wr =̇ {𝚋 == 1? 0 : 𝑖 if ¬𝑃(𝑒)

𝑖 otherwise

USLH

⟦be⟧𝔹 =̇ 𝚋 == 0&& be

⟦𝑖⟧𝚇
rd =̇ 𝚋 == 1? 0 : 𝑖
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iSLH Master Recipe FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙

⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒

⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 be 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦be⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦be⟧𝔹? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦be⟧𝔹? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 be 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦be⟧𝔹 𝚍𝚘
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⟨𝑐′, 𝑠1′⟩

⟨𝑐′, 𝑠2′⟩

⟨𝑐′, 𝑠′
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1 , 𝕥⟩
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2, 𝕗⟩ ⟨𝑐″, 𝑠″

2 , 𝕥⟩
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Unwinding:
Observations depend only on directives
• public values are equal
• secret values are masked

preserves well-labeledness
of annotated program
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• Flexible SLH combines the benefits of Selective and Ultimate SLH
‣ same level of protection as USLH
‣ no overhead compared to SSLH on constant-time code

• First machine-checked proofs of SLH mitigations
‣ proofs of SSLH and USLH obtained as corollaries
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• Practical implementation and evaluation of FSLH
‣ at what level should analysis be performed?
‣ preservation by other compilation passes?

• Investigation of other LLVM SLH implementations
‣ too much complexity for fully mechanized proofs
‣ Property-based testing as a pragmatic compromise
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  if i < secrets_size then
    secrets[i] <- key;
    x <- a[0];
    if x then...

• out-of-bounds i could write to a[0]
• read from public array a is unprotected
‣ reads speculatively stored secret
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