
FSLH: Flexible Mechanized Speculative Load Hardening
Jonathan Baumann1,2 Roberto Blanco1,3 Léon Ducruet1,4,5 Sebastian Harwig1,6 Cătălin Hrit,cu1

1MPI-SP, Bochum 2ENS Paris-Saclay 3TU Eindhoven 4ENS Lyon 5Aarhus University 6Ruhr University Bochum

Keywords: side-channel defenses, speculative execution,
Spectre, secure compilation, speculative load hardening, rel-
ative security, formal verification, Rocq, Coq

1 Background
Speculative side-channel attacks such as Spectre pose for-
midable threats for the security of computer systems [5, 12].
For instance, in typical Spectre v1 attacks [11], misspec-
ulated array bounds checks cause out-of-bounds memory
accesses to load and reveal secrets via timing variations.
SLH [6] is a software countermeasure against such attacks
that dynamically tracks whether execution is in a mispre-
dicted branch using a misspeculation flag register.

It is, however, challenging to build software protections
that are both efficient and that provide formal end-to-end
security guarantees against precisely specified, speculative
side-channel attackermodels [7]. Cryptography researchers
are leading the way in this space, with defenses such as se-
lective SLH efficiently achieving speculative constant-time
guarantees against Spectre v1 for cryptographic code with
typical overheads under 1% [14, 15]. This work is, however,
specialized to only cryptographic code and often also to
domain-specific languages for cryptography, such as Jas-
min [1].

It is more difficult to properly protect arbitrary pro-
grams written in general-purpose languages, which in par-
ticular do not obey the cryptographic constant-time disci-
pline [2, 8]. SLH was not strong enough for protecting such
non-cryptographic code [13], leading to the introduction of
Ultimate SLH [13, 16], which uses the misspeculation flag
to mask not only the values loaded from memory, but also
all branch conditions, all memory addresses, etc. While this
should in principle be strong enough to achieve a relative
security notion [7, 13, 16], it also brings ∼150% overhead on
the SPEC benchmarks [16], which seems unacceptable for
many practical scenarios.

2 Contribution
In recent work [4], we therefore introduce FSLH, a flexible
SLH notion that achieves the best of both worlds by gen-
eralizing both Selective and Ultimate SLH. Like Selective
SLH, FSLH keeps track of which program inputs are secret
and which ones not and only protects those memory oper-
ations that could potentially leak secret inputs when ran
speculatively. Like Ultimate SLH, FSLH also provides pro-
tection for non-cryptographic code that does not respect
the constant-time discipline, but does this by only masking

those observable expressions (e. g. branch conditions) that
are potentially influenced by secrets.
We give a suitable definition of relative security for trans-

formations protecting arbitrary programs, which states that
the transformed program running with speculation should
not leak more than what the source program leaks sequen-
tially. We formally prove in Rocq (previously knows as Coq)
that FSLH enforces this relative security notion. Finally, we
also prove that FSLH can be instantiated to recover both Se-
lective and Ultimate SLH, therefore obtaining mechanized
security proofs for both versions.

3 The FSLH Transformation
The FSLH mitigation builds on the design of Selective SLH
[14], which in turn builds on SLH [6], a program transfor-
mation combining

1. a mechanism to keep track of misspeculation in a spe-
cial misspeculation flag, and

2. a means of preventing leakage by masking based on
this misspeculation flag.

The former mechanism is shared between Selective SLH, Ul-
timate SLH and FSLH and relies on using branchless con-
ditional expressions after every branch to update the mis-
speculation flag with the condition used for the branch, so
that even if the branch is mispredicted, the flag will be up-
dated correctly. The latter can take several forms, including
address hardening, where the memory addresses for load in-
structions are masked to zero if the misspeculation flag is
set, and value hardening, where the loaded value will be
masked to zero instead.
Selective SLH [14] is a refinement of SLH that applies only

to code satisfying the cryptographic constant-time (CCT) dis-
cipline, which is standard practice in the field of cryptogra-
phy [2, 3, 8, 9] and requires that

1. program inputs are identified as public or secret,
2. control flow and memory addresses are not allowed

to depend on secrets.
This discipline is easily enforceable with a type system,
which Selective SLH [14] leverages to selectively apply value
hardening only to loads to public variables, as the CCT disci-
pline already guarantees that there is no leakage from secret
variables.

For FSLH, we substitute the CCT type system with a
sound and fully permissive flow-sensitive static analysis sim-
ilar to the algorithmic version of Hunt and Sands’s [10] flow-
sensitive type system. This analysis only tracks which ex-
pressions and variables contain secrets, but does not restrict



Jonathan Baumann, Roberto Blanco, Léon Ducruet, Sebastian Harwig and Cătălin Hrit,cu

the use of secret-dependent expressions in e. g. branch con-
ditions. While our analysis is sound, it is necessarily impre-
cise, as information on control flow is not available stati-
cally, so the analysis safely overapproximates which vari-
ables may contain secrets after branches and loops. Impor-
tantly however, this analysis accepts arbitrary programs,
and imposes no restrictions.

Unlike Selective SLH, which only protects loads to public
variables, FSLH thus has to deal with more situations that
may produce leakage:

1. Branch conditions may now be secret, and therefore
requiremasking to prevent leaking secrets via control
flow, like in Ultimate SLH [16]. This is achieved by
modifying affected branch conditions to additionally
check that themisspeculation flag is not set, therefore
ensuring that these conditions will evaluate to false
during misspeculated execution without affecting se-
quential execution. Unlike Ultimate SLH, we only ap-
ply this masking if the branch condition is secret.

2. Memory addresses can now also be secret, in which
case we apply address hardening instead of value
hardening, so that the address is also protected.

4 Machine-checked Relative Security
Proof

We prove in Rocq that FSLH ensures a notion of Relative
Security, guaranteeing that the hardened program does not
leakmore during speculative execution than the source pro-
gram does sequentially. More formally, it states that for any
pair of initial states which agree on the values of all pub-
lic variables and for which the attacker-visible observations
produced during sequential execution of the source pro-
gram are equal, the observations produced by the hardened
program during speculative execution will also be equal.
Taking inspiration from Shivakumar et al. [14], the secu-

rity proof decomposes into a compiler correctness proof for
an ideal semantics and a separate relative security proof for
this semantics. Our ideal semantics operates on annotated
programs, where expressions are marked as either public or
secret according to the static analysis described above. Like
the target semantics, the ideal semantics features specula-
tive execution, however, it masks values directly in the se-
mantics according to the annotations. Therefore, the source
program in the ideal semantics behaves the exact same way
as the target program in the speculative semantics, produc-
ing the same attacker-visible observations. We formally es-
tablish this using a backwards compiler correctness proof.

Thus, the proof of relative security is reduced to prov-
ing relative security between the ideal semantics and the
sequential semantics. For this, we further instrument the
ideal semantics with sound dynamic information flow track-
ing. Relative security then follows from the following three
facts:

1. Execution along the correct path in the ideal seman-
tics is the same as sequential execution, and produces
the same attacker-visible observations.

2. Execution in the ideal semantics preserves agreement
on public values, i. e. if we execute the same program
on two initial states that agree on all variables that are
initially considered public, then the resulting states
will agree both on the labelings computed by the dy-
namic tracking, and on the values of all variables la-
beled public.

3. Duringmispredicted execution, all observable expres-
sions that are not public are masked. 1

In order to prove the last point, we introduce a well-labeled-
ness predicate that describes whether annotations in a pro-
gram are sound with respect to an initial and a final labeling.
It does not require the labels to be precise, i. e. an expres-
sion which is actually public is allowed to be labeled as se-
cret, but not the other way round. Importantly, this means
that well-labeledness is preserved when strengthening the
initial labeling (changing a label from secret to public) and
when weakening the final labeling (changing a label from
public to secret), which allows us to prove that execution in
the ideal semantics preserves well-labeledness, in the sense
that after executing a step of a well-labeled program in the
ideal semantics, the remaining program is well labeled for
the initial labeling updated by the dynamic tracking and the
original final labeling.
Since the ideal semantics preserves well-labeledness, we

know that during mispredicted execution, all secret values
will be masked, so the attacker-visible observations depend
only on the values of public variables. Since the ideal se-
manics further preserves agreement on public variables, we
obtain that all observations produced during misspeculated
execution must be the same for both executions. Since the
non-misspeculated parts of the ideal executions correspond
exactly to the sequential executions, which produce equal
observations, we obtain relative security of the ideal seman-
tics with respect to the sequential semantics.

5 Conclusion
We have introduced FSLH, a mitigation which generalizes
Selective SLH and Ultimate SLH to achieve the best of both
worlds: Like Ultimate SLH, it achieves relative security to all
programs, without restrictions to any particular discipline;
like Selective SLH, it is efficient by only inserting protec-
tions where needed. We formally prove in Rocq that FSLH
ensures relative security. Since FSLH generalizes Selective
SLH and Ultimate SLH, we also obtain machine-checked se-
curity proofs for both these mitigations as corollaries.

1This is highly similar to a lemma in the security proof of Ultimate SLH [16],
for which the observations only depend on the structure of the program.



FSLH: Flexible Mechanized Speculative Load Hardening

References
[1] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot,

Benjamin Grégoire, Vincent Laporte, Tiago Oliveira, Hugo Pacheco,
Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-
Assurance and High-Speed Cryptography. In Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS, BhavaniThuraisingham, David Evans, Tal Malkin, and Dongyan
Xu (Eds.). ACM, 1807–1823. doi:10.1145/3133956.3134078

[2] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, François
Dupressoir, and Michael Emmi. 2016. Verifying Constant-Time Im-
plementations. In 25th USENIX Security Symposium, Thorsten
Holz and Stefan Savage (Eds.). USENIX Association, 53–70.
https://www.usenix.org/conference/usenixsecurity16/technical-
sessions/presentation/almeida

[3] Gilles Barthe, Gustavo Betarte, Juan Diego Campo, Carlos Luna, and
David Pichardie. 2020. System-Level Non-interference of Constant-
Time Cryptography. Part II: Verified Static Analysis and Stealth Mem-
ory. J. Autom. Reason. 64, 8 (2020), 1685–1729. doi:10.1007/S10817-
020-09548-X

[4] Jonathan Baumann, Roberto Blanco, Léon Ducruet, Sebastian Har-
wig, and Catalin Hritcu. 2025. FSLH: FlexibleMechanized Speculative
Load Hardening. In 38th IEEE Computer Security Foundations Sympo-
sium, CSF 2025, Santa Cruz, CA, USA, June 16-20, 2025. IEEE, 569–584.
doi:10.1109/CSF64896.2025.00023

[5] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Ben-
jamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin,
and Daniel Gruss. 2019. A Systematic Evaluation of Transient
Execution Attacks and Defenses. In 28th USENIX Security Sympo-
sium, Nadia Heninger and Patrick Traynor (Eds.). USENIX Associa-
tion, 249–266. https://www.usenix.org/conference/usenixsecurity19/
presentation/canella

[6] Chandler Carruth. 2018. Speculative Load Hardening: A Spectre Vari-
ant #1Mitigation Technique. LLVMReference. https://llvm.org/docs/
SpeculativeLoadHardening.html

[7] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and
Deian Stefan. 2022. SoK: Practical Foundations for Software Spectre
Defenses. In 43rd IEEE Symposium on Security and Privacy, SP 2022.
IEEE, 666–680. doi:10.1109/SP46214.2022.9833707

[8] Sunjay Cauligi, Gary Soeller, Brian Johannesmeyer, Fraser Brown,
Riad S. Wahby, John Renner, Benjamin Grégoire, Gilles Barthe, Ran-
jit Jhala, and Deian Stefan. 2019. FaCT: a DSL for timing-sensitive
computation. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI, Kathryn S.
McKinley and Kathleen Fisher (Eds.). ACM, 174–189. doi:10.1145/
3314221.3314605

[9] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2023. Bin-
sec/Rel: Symbolic Binary Analyzer for Security with Applications
to Constant-Time and Secret-Erasure. ACM Trans. Priv. Secur. 26, 2
(2023), 11:1–11:42. doi:10.1145/3563037

[10] Sebastian Hunt and David Sands. 2006. On flow-sensitive security
types. In Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2006, Charleston, South
Carolina, USA, January 11-13, 2006, J. Gregory Morrisett and Simon
L. Peyton Jones (Eds.). ACM, 79–90. doi:10.1145/1111037.1111045

[11] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss,
Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas
Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks:
Exploiting Speculative Execution. In 2019 IEEE Symposium on Security
and Privacy, SP. IEEE, 1–19. doi:10.1109/SP.2019.00002

[12] Ross McIlroy, Jaroslav Sevcík, Tobias Tebbi, Ben L. Titzer, and
Toon Verwaest. 2019. Spectre is here to stay: An analysis of side-
channels and speculative execution. CoRR abs/1902.05178 (2019).
arXiv:1902.05178 http://arxiv.org/abs/1902.05178

[13] Marco Patrignani and Marco Guarnieri. 2021. Exorcising Spectres
with Secure Compilers. In 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS, Yongdae Kim, Jong Kim, Giovanni
Vigna, and Elaine Shi (Eds.). ACM, 445–461. doi:10.1145/3460120.
3484534

[14] Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe,
Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Sioli
O’Connell, Peter Schwabe, Rui Qi Sim, and Yuval Yarom. 2023. Spec-
tre Declassified: Reading from the Right Place at the Wrong Time. In
44th IEEE Symposium on Security and Privacy, SP. IEEE, 1753–1770.
doi:10.1109/SP46215.2023.10179355

[15] Basavesh Ammanaghatta Shivakumar, Gilles Barthe, Benjamin Gré-
goire, Vincent Laporte, Tiago Oliveira, Swarn Priya, Peter Schwabe,
and Lucas Tabary-Maujean. 2023. Typing High-Speed Cryptography
against Spectre v1. In 44th IEEE Symposium on Security and Privacy,
SP. IEEE, 1094–1111. doi:10.1109/SP46215.2023.10179418

[16] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Pe-
ter Schwabe, and Yuval Yarom. 2023. Ultimate SLH: Taking Spec-
ulative Load Hardening to the Next Level. In 32nd USENIX Se-
curity Symposium, Joseph A. Calandrino and Carmela Troncoso
(Eds.). USENIX Association, 7125–7142. https://www.usenix.org/
conference/usenixsecurity23/presentation/zhang-zhiyuan-slh

https://doi.org/10.1145/3133956.3134078
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/almeida
https://doi.org/10.1007/S10817-020-09548-X
https://doi.org/10.1007/S10817-020-09548-X
https://doi.org/10.1109/CSF64896.2025.00023
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://doi.org/10.1109/SP46214.2022.9833707
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3314221.3314605
https://doi.org/10.1145/3563037
https://doi.org/10.1145/1111037.1111045
https://doi.org/10.1109/SP.2019.00002
https://arxiv.org/abs/1902.05178
http://arxiv.org/abs/1902.05178
https://doi.org/10.1145/3460120.3484534
https://doi.org/10.1145/3460120.3484534
https://doi.org/10.1109/SP46215.2023.10179355
https://doi.org/10.1109/SP46215.2023.10179418
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh

	1 Background
	2 Contribution
	3 The FSLH Transformation
	4 Machine-checked Relative Security Proof
	5 Conclusion
	References

