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Secure: fully mechanized relative security proof in Rocq
General: accepts all programs
Efficient: only inserts protections where needed

Generalization of both Selective SLH and Ultimate SLH

» coincides with Selective SLH on programs respecting the CCT discipline
» coincides with Ultimate SLH if everything is labeled as secret
Mechanized security proofs for both mitigations obtained as corollaries
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 Practical implementation and evaluation of FSLH
» at what level should analysis be performed?
» preservation by other compilation passes?

» Investigation of other LLVM SLH implementations
» too much complexity for fully mechanized proofs
» Property-based testing as a pragmatic compromise

 Mitigations for other SPECTRE variants
» e.g. prediction of indirect branch targets (ongoing work) and return addresses
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Speculative Semantics

v = [ae],

(X 1= ae, p, 1, b) ~x(skip, [X — v]p, u, b)

SPEC_ASGN

<Cf? Ps I, b) {_01>3<C;: p!a p”? bf)

SPEC_SEQ_STEP R, PR—
(eri c2ypips 0) —x{cii casps s 1)

SPEC_WHILE
Cwhite = While be do ¢

(Cyhiles Py 115 D) L)S(if be then ¢; cynie €lse skip, p, . b)

SPEC_SEQ_SKIP o
(skip; ¢, p, i, b) —=x{c, p, 1, D)

SPEC_IF
b = [be],

(if be then cr else cr, p, . b) P—’?%:—b’—)s(cb:,p,u,b)

SPEC_IF_FORCE
b = [be],

(if be then cr else cp, p, p,b) pranchl s (C—pyy Py 1y T)

force

SPEC_READ

i = [ie], v=1[ali]], i<lal,
readai

<X < aliel, Py Hs b> —)3<Skip, [X = ’U]p’ M, b)
step

SPEC_READ FORCE

i = [ie], v ={[b[j]l,

(X + aliel, p, i, T) %@(skip, X 5 v]p, p, T)
oadb j

P> |a|u ) < |b|#f

SPEC_WRITE
i = [ie], v=lae], i<]aly

(alie] « ae, p, u, b) 2% (skip, p, [ali] + v]u, b)
step
SPEC_WRITE_FORCE

i=[iel, v=[a], i>al, j<]bl,

(alie] « ae, p, i, T) 2% (skip, p, [b[j] — v]u, T)

storeb j

MAX PLANCK INSTITUTE ((\¢4"
FOR SECURITY AND PRIVACY T
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IFC type system s

WT_SKip WT_ASGN WT_SEQ WT_IF
Pla)={¢ pcl TP(X) P;PAlk,. c; P;PAF, c; P(be)=! P;PAF, . ,c; P;PAF, ¢
P;PA -, skip P;PAF, X :=a P;PAF, c1; ¢ P;PA |-, if be then c¢; else ¢
WT_WHILE WT_AREAD WT_AWRITE
P(be)=1( P;PAtF,. . c P(i)=/( pclilLPA(a) CP(X) P(i)="( Ple)={ pclil It T PA(a)
P;PA . while be do ¢ P;PA -, X+ alil P;PAF,. ali] < e
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Ideal Semantics (IFC)

IDEAL_IF
P(be) =1 b = (L —b) A [be],

(if be then cy else cr, p, i1, b) %(cbup, 1, b)

IDEAL_IF_FORCE
P(be) =1 b = (£V —b) A [be],

<lf be then cy else CFap:uab> %(C—'b’apa s T)

IDEAL_READ

v, . [0 if (—~4;VP(X))Ab
Plie) =L &= lie], otherwise
v=[ali]], i<lal,

(X < aliel, p, 1, b) %(Skip, (X = v]p, pt, b)

MAX PLANCK INSTITUTE ({¢4”
FOR SECURITY AND PRIVACY i@

IDEAL_READ_FORCE
P(ie) -P(X) i=[ie],
v=[blj]l, i>lal, 7 <Ibls

readai

(X < aliel, p, p, T) m( kip, [X = v]p, u, T)

IDEAL_WRITE
.0 if (—0;V—l)Ab
= {[[ie]] p Otherwise
P(ie) ={; Plae)=1{ v=][ae], i<|a|,

writeat

(alie] < ae, p, u, b) ﬁ(skip,p, [a[i] — v]u, b)
step

IDEAL_WRITE_FORCE
P(ie) P(ae)
i = [ie], v=l[ae], i>lal, j<|bl,

write a i

(alie] < ae, p,uu, T) W(skip,p, [b[7] — v]p, T)
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Ideal Semantics (annotated programs)

FOR SECURITY AND PRIVACY

Plbey=T b = (£V —b) A [be],

IDEAL_IF
(if beas then cT else Cf, p, p, b, pc, P, PA) Mkg(branch PC Ty Py iy by pe LI L P PA)
step
IDEAL_IF_FORCE W V= (V=) A |[be]]p
(if beas then ¢t else cF, p, u, b, pc, P, PA) %(branch pc ¢y py iy T, pe L £, P, PA)
orce
. 1 b if [ ¢ b .
Pliey=7T; i= 0. 7 NS = 0 lfo.‘A i < lal,
lie], otherwise [ali]], otherwise
IDEAL_READ ——

(Xar, < aliear ], py p, b, pe, Py PA) ——5(skip, [X +— v]p, u, b, pc, [X = Ix|P, PA)

. . if [ . .
Piief i = [ie, v={° o PO s el < bl

[b[j]],. otherwise

IDEAL_READ_FORCE

readai

(Xae, < aliear],p,p, T,pc, P, PA) ~—~ﬁ\i (skip, [X +> v]p, u, T, pc, [X > (4| P, PA)

IDEAL_BRANCH

IDEAL_SEQ_SKIP
? (€, p, p,b,pc, P, PA} ( o U pd P PA)

terminal ¢;

(€T a(pr.pary €2, Py 1y b, pe, P, PAY =x(23, p, i1, b, pc-after ¢ pc, P, PA) (branch f c,. .. } T);(branch (c,...)
L (

Fig. 12: Ideal semantics for FVSLH" (selected rules)
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Flow-sensitive static analysis B

{(skip)),.™ =(skip, P, PA)
(X := e)p™ =(X := e, [X > P(e)]P, PA)
((crs e2)p™ =(cTia(py pa,) C2: P2, PA3) where  (c7,Py,PAy) = ((c/ )b
and (C‘z,PQ, PAQ) (( 2)>P1 PAL
(if be then c; else c2))p™ =(if beap(s) then €7 else €3, Py U Py, PAy U PAy) where  (c7,P1,PA1) = (1)) pive)
P.PA
and (CQ,PQ,PAQ) = (( »m‘uP(be}
(while be do c)):™ =(while beap, (b) dO Ca(py, pan)» Phic; PAfx)
. P PA" .
where (P, PAg) = fix (A(P', PA').let (¢, P, PA") = () [T} ., im0 (P, PA") LU (P, PA))
(X = alil) ™ =(Xapeuri)uracs) < aliapg) ], [X — pe U P(i) U PA(a)]P, PA)

(alil « e)PPA =(aliap)] « e,P,[a+ PA(a) Lipc LI P(i) LI P(e)|PA)

Fig. 11: Flow-sensitive IFC analysis generating annotated commands
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Well-Labeledness wexgaangismryrs (6

WL_WHILE
Pi(be) C lp, branch-free ¢
(P1,PA,) C (P',PA") (P',PA") C (P, PAs)

Pi,PAy) C (P, PA -
WL_SKIP (P1 ) E (P 2) PI:PA”\'*P!:PA’ l_pcl_lf;,e Cl

Py, PA Ps, PAs |, ski i C
1, FAy ~ Po, FA3 7pe SK1P Py, PA; ~» Py, PA; I, (while beay, do Ca(pr pary)

([X — Pl(e)]Pl,PAl) E P2,PA2

WL_ASGN WL_AREAD
P1,PAy ~ Py, PAs |_pc (X :=e) Pl(é’)gfz pCEEx
branch-freec; Py,PA; ~ P',PA" -, ¢1 6; Clx PA1(a) T Ux  ([X+— €x|P1, PA1) C (P2, PA2)
, i

WL S50 P',PA" ~ Pa, PAs = (pe-afiercs pe) C2 Py, PAy ~> Py, PAs ) (Xar, < aleay,])

N Py, PAy ~ P2, PAs bpe (CTia(p par) C2) WL_AWRITE

WL_IF B B Pi(i)E L

Py(be) C 0, branch-free ¢ branch-free ¢; (P1,]a PA(a) Lpc i€ U Py (e)]PAy) T (Pa, PAs)

P1,PAy ~ Py, PAs bFpeyg, €1 P1,PAy ~ Po, PAs Fpeye, ©2
P1,PAy ~ Py, PAs ) (if beay, then ¢ else ¢3)

Pl,PAl ~* PQ,PAQ |_pc (a[i@fj] — 6’)

Pl,PAl N PQ,PAQ l_pc Cc

WL_BRANCH —
Pl,PAl ~ Pz,PAz |_pc (branch 14 C)
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ISLH must protect stores s

if i < ieCfetS_Sikze then - out-of-bounds i could write to a[0]
crets <- K€y, i I
ie<_ a[éﬂ y - read from public array a is unprotected
if x thenf B » reads speculatively stored secret
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