FSLH: Flexible Mechanized Speculative
Load Hardening

MAX PLANCK INSTITUTE
FOR SECURITY AND PRIVACY

Jonathan Baumann'? Roberto Blanco'®, Léon Ducruet”, Sebastian Harwig"®, Catalin Hritcu’
"MPI-SP, Germany 2ENS Paris-Saclay, France 3TU/e, Netherlands “ENS Lyon, France °Ruhr University Bochum, Germany

Why FSLH? MAX PLANCK INSTITUTE ((\¢4"
* FOR SECURITY AND PRIVACY L

« Spectre Attacks remain a threat

1/12

Why FSLH? MAX PLANCK INSTITUTE ((\¢4"
* FOR SECURITY AND PRIVACY L

« Spectre Attacks remain a threat

- Existing mitigations have complementary strengths and weaknesses:

1/12

Why FSLH? MAX PLANCK INSTITUTE ({&#",
* FOR SECURITY AND PRIVACY g

« Spectre Attacks remain a threat

- Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023)

 sparse protection, low overhead

1/12

Why FSLH? MAX PLANCK INSTITUTE ({4,
* FOR SECURITY AND PRIVACY g

« Spectre Attacks remain a threat

- Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023)

 sparse protection, low overhead
« protects only cryptographic code

1/12

Why FSLH? MAX PLANCK INSTITUTE ((\$#"
* FOR SECURITY AND PRIVACY T

« Spectre Attacks remain a threat

- Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023) Ultimate SLH (Zhang et al. 2023)

 sparse protection, low overhead - exhaustive, high overhead
« protects only cryptographic code

1/12

Why FSLH? MAX PLANCK INSTITUTE ((\$#"
* FOR SECURITY AND PRIVACY T

« Spectre Attacks remain a threat

- Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023) Ultimate SLH (Zhang et al. 2023)

 sparse protection, low overhead - exhaustive, high overhead
« protects only cryptographic code - protects all programs

1/12

Why FSLH? MAX PLANCK INSTITUTE ((\#%"
0 FOR SECURITY AND PRIVACY Al

« Spectre Attacks remain a threat

- Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023) Ultimate SLH (Zhang et al. 2023)

 sparse protection, low overhead - exhaustive, high overhead
« protects only cryptographic code - protects all programs

Flexible SLH (published at CSF'25)

sparse protections for all programs

1/12

Why FSLH? MAX PLANCK INSTITUTE ((\#%"
0 FOR SECURITY AND PRIVACY Al

« Spectre Attacks remain a threat

- Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023) Ultimate SLH (Zhang et al. 2023)

 sparse protection, low overhead - exhaustive, high overhead
« protects only cryptographic code - protects all programs

Flexible SLH (published at CSF'25)

sparse protections for all programs

- Existing mitigations rely on manual security proofs

1/12

Why FSLH? MAX PLANCK INSTITUTE ({g@™
0 FOR SECURITY AND PRIVACY Al

« Spectre Attacks remain a threat

- Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023) Ultimate SLH (Zhang et al. 2023)

 sparse protection, low overhead - exhaustive, high overhead
« protects only cryptographic code - protects all programs

Flexible SLH (published at CSF'25)

sparse protections for all programs

- Existing mitigations rely on manual security proofs
» First machine-checked proofs for Selective, Ultimate, and Flexible SLH

1/12

Why FSLH? MAX PLANCK INSTITUTE ({g@™
0 FOR SECURITY AND PRIVACY Al

« Spectre Attacks remain a threat

- Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023) Ultimate SLH (Zhang et al. 2023)

 sparse protection, low overhead - exhaustive, high overhead
« protects only cryptographic code - protects all programs

Flexible SLH (published at CSF'25)

sparse protections for all programs

- Existing mitigations rely on manual security proofs
» First machine-checked proofs for Selective, Ultimate, and Flexible SLH
Rocq development: ~ 4300 lines

1/12

S pe ctre (V 1) R

i ----- e

if i < size(a;) then
J < ayli];

X ¢ ag|j]

else

2/12

S pe ctre (V 1) R

i ----- e

if i < size(a;) then

§ ¢ agli]; _

X ¢ ag|j]

else

2/12

S pe ctre (V 1) R

i ----- e

if i < size(a;) then

j < aq|i];
S

else

2/12

S pe ctre (V 1) R

i ----- e

if i < size(a;) then

J < 31[1]3"\\
X ¢ a,j]
\

else

2/12

S pe ctre (V 1) R

leti—4_ [..]lan[O]]fayTa]] ey 2] e]I [Secret] ..

N

if i < size(a;) then

j < agli];

X ¢ ag|j]

else

2/12

S pe ctre (V 1) R

leti—4_ [..]lan[O]]fayTa]] ey 2] e]I [Secret] ..

N

if i < size(a;) then
////”' J < ayli];

X ¢ ag|j]

speculates by
predicting branch
else

2/12

S pe ctre (V 1) R

leti =4 -----

1f i <Zszze

////”' j < ayi];

speculates by]
2

predicting branch
else

2/12

S pe ctre (V 1) R

leti =4 -----

1f 1< szze

/] <_31[1

X ¢ ag|j]

else \m

speculates by
predicting branch

2/12

FOR SECURITY AND PRIVACY L&

Previous Work: Selective SLH (Shivakumar et al. 2023)

if i < size(a;) then

joay [1];

X ay []

else

3/12

Previous Work: Selective SLH (Shivakumar et al. 2023

FOR SECURITY AND PRIVACY L&

« CCT type system:
» variables and arrays public or secret

if ip < size(a;), then

jr < ayrlir);

Xp < aor|jT]

else

3/12

Previous Work: Selective SLH (Shivakumar et al. 202 wax gance wenimure (@

. _ N « CCT type system:
if iy < size(a;); then » variables and arrays public or secret

» secret values may not be used as indices

jp < ayp[inl; or branch conditions

Xp < aor|jT);

Y——a37 X5];

if y 10—threr .. else ...

else
b:=ip < size(a;),?1:Db

3/12

Previous Work: Selective SLH (Shivakumar et al. 2023)

FOR SECURITY AND PRIVACY L&

« CCT type system:
» variables and arrays public or secret

_; » secret values may not be used as indices

: .. or branch conditions
Jr < ayp[ir); S . _
* maintain a misspeculation flag

if ip < size(a;), then

Xp < aor|jT);

3T 1 XF]
if y +o-themr - else ...
else

3/12

Previous Work: Selective SLH (Shivakumar et al. 2028

FOR SECURITY AND PRIVACY L&

« CCT type system:
» variables and arrays public or secret

b := _; » secret values may not be used as indices

if ip < size(a;), then

: .t or branch conditions
Jr ¢ arrlirl; S . .
- * maintain a misspeculation flag
Xp < agp|JTl; . . .
» updated with constant-time conditionals
Y——a57 X5
if y +o-themr - else ...
else

b:=ip < size(a;),?1:Db

3/12

Previous Work: Selective SLH (Shivakumar et al.

FOR SECURITY AND PRIVACY L&

« CCT type system:

» variables and arrays public or secret
b:=ip < size(a;), ?b:1; » secret values may not be used as indices
o — ayr[ir]iie = b 20 j0; or branch conditions
« maintain a misspeculation flag

» updated with constant-time conditionals

if iy < size(ay), then

Xp < aor|jT);

¥_4—1r’ﬁFT° i i
3TLEFD - mask reads to public variables
if y 10-ttremr .. else ...
else

b:=ip < size(a;),?1:Db

3/12

Previous Work: Selective SLH (Shivakumar et al.

FOR SECURITY AND PRIVACY L&

« CCT type system:

» variables and arrays public or secret
b:=ip < size(a;), ?b:1; » secret values may not be used as indices
o < ayr[in];ir = b20: jo; or branch conditions
« maintain a misspeculation flag

» updated with constant-time conditionals

if iy < size(ay), then

Xp < aor|jT);

Y—s—a3 T Xp s - :
3TLEFD - mask reads to public variables
1 f sz 10—t} i
if g therr"else » secret variables can not leak anyway
else

b:=ip < size(a;),?1:Db

3/12

Previous Work: Selective SLH (Shivakumar et al

FOR SECURITY AND PRIVACY L&

. « CCT type system:
Hdr< Szze(a1>T then » variables and arrays public or secret
b:=ip < size(a;), ?b:1; » secret values may not be used as indices
jr — ayplipl; jri=020:j; or branch conditions

maintain a misspeculation flag

Xp < aop|jTl : : "
K v (3] » updated with constant-time conditionals

Y—s—a3 T Xp s - :
3TLEFD - mask reads to public variables
1 f sz 10 %1 i
if g tiren ... else » secret variables can not leak anyway
else

b:=ip < size(a;),?1:Db efficient mitigation with only minimal masking

3/12

Previous Work: Selective SLH (Shivakumar et al

FOR SECURITY AND PRIVACY L&

. _ N « CCT type system:

. . t . .

if iy < size(a;); then » variables and arrays public or secret
b:=ip < size(a;), ?b:l; » secret values may not be used as indices
p ¢ ayp[ic]; jr=b70: jr: or branch conditions

maintain a misspeculation flag

Xp < aor|JTl
4 25 [» updated with constant-time conditionals

Y—s—a3 T Xp s - :
3TLEFD - mask reads to public variables
1 f sz 10 %1 i
if g tiren ... else » secret variables can not leak anyway
else

b:=ip < size(a;),?1:Db efficient mitigation with only minimal masking

» for a very limited class of programs

3/12

Previous Work: Ultimate SLH (zhang et al. 2023)

FOR SECURITY AND PRIVACY)

if i < size(a;) then

b:=i < size(a,) ?7b:1; * no type system, mask everything
joa [1];

x ay [j];

y ag [x [;

if y < 10 then ... else ...

else
b:=1i <size(a;) 71:b

4/12

Previous Work: Ultimate SLH (zhang et al. 2023)

FOR SECURITY AND PRIVACY L&

if i < size(a;) then

b:=i < size(a;) ?b:1; * no type system, mask everything
j I; - mask all indices
X a, | ;

y < ag | ;
if y < 10 then ... else ...
else

b:=1i <size(a;) 71:b

4/12

Previous Work: Ultimate SLH (zhang et al. 2023)

FOR SECURITY AND PRIVACY)

if i < size(a;) then

b:=1i < size(a;) ?b:1; * no type system, mask everything
j < a; [b?70:1]; - mask all indices
x < ay [b70:j]; » mask branch conditions as well

y < a3 [b?70:x];
if -y < 10 then ... else ...

else
b:=1i <size(ay) 71:b

4/12

Previous Work: Ultimate SLH (zhang et al. 2023)

FOR SECURITY AND PRIVACY L&

if i < size(a;) then

b:=1i < size(a;) ?b:1; no type system, mask everything

mask all indices
mask branch conditions as well

j < a; [b?70:1];

X < a, [b70:j];
y < a3 [b?70:x];
if b&&y < 10 then ... else ...

else
b:=1i <size(ay) 71:b

4/12

Previous Work: Ultimate SLH (zhang et al. 2023)

FOR SECURITY AND PRIVACY L&

if i < size(a;) then

b:=1i < size(a;) ?b:1; no type system, mask everything

mask all indices
mask branch conditions as well

j < a; [b?70:1];

X < a, [b70:j];
y < a3 [b?70:x];
if b&&y < 10 then ... else ...

else
b:=1i <size(ay) 71:b

applies to all programs

4/12

Previous Work: Ultimate SLH (zhang et al. 2023)

FOR SECURITY AND PRIVACY L&

if i < size(a;) then

b:=1i < size(a;) ?b:1; * no type system, mask everything
j < a; [b?70:1]; - mask all indices
x < ay [b70:j]; » mask branch conditions as well

y < a3 [b?70:x];

if b&&y < 10 then ... else ... - applies to all programs

else » causes high overhead (150%)
b:=1i <size(ay) 71:b

4/12

Flexible SLH: The Best of Both Worlds

FOR SECURITY AND PRIVACY)

if ip < size(a;), then

b= iy < size(a;) ?b:1; - Obtain security levels with

. o , static information-flow analysis
jr < arrlig);jr=b70: jr;

Xp < aor|jT);

Y——a37 [X5);

if y <30-them . else ...

else
b:=ip < size(a;),?1:Db

5/12

Flexible SLH: The Best of Both Worlds

FOR SECURITY AND PRIVACY)

if ip < size(a;), then

b= iy < size(a;) ?b:1; - Obtain security levels with
static information-flow analysis

jr < ayplirl; jri=070: g3 : —_
JT i) Ir JT » without restricting the use of secrets

Xp < aor|jT);

Yr < agr[Xpl;

if yp < 10 then ... else ...
else

b:=ip < size(a;),?1:Db

5/12

Flexible SLH: The Best of Both Worlds

FOR SECURITY AND PRIVACY L&

if iy < size(ay), then

b:i=1ip < sz‘ze(al)T ?7b:1; » Obtain security levels with

static information-flow analysis

» without restricting the use of secrets
» accepts all programs

jr < ayplip; jr=b?0:j;
Xp < aor|jT);

Yr < agr[Xpl;

if yp < 10 then ... else ...
else

b:=ip < size(a;),?1:Db

5/12

Flexible SLH: The Best of Both Worlds

FOR SECURITY AND PRIVACY L&

if iy < size(ay), then

b:i=1ip < sz‘ze(al)T ?7b:1; » Obtain security levels with

static information-flow analysis

» without restricting the use of secrets
» accepts all programs

jr < ayplip; jr=b?0:j;
Xp < aor|jT);

Yr < asr|Xpl;

- Combine masking approaches:
if yp < 10 then ... else ...

else
b:=ip < size(a;),?1:Db

5/12

Flexible SLH: The Best of Both Worlds

FOR SECURITY AND PRIVACY i

if iy < size(ay), then

b:i=1ip < size(al)T ?7b:1; » Obtain security levels with

static information-flow analysis

» without restricting the use of secrets
» accepts all programs

jr < ayp[ir)jr=b070: jr;
Xp 4 agp|J1l;

yp < azp[b?0:x];

if yp < 10 then ... else ...

else
b:=ip < size(a;),?1:Db

- Combine masking approaches:
» mask secret indices

5/12

Flexible SLH: The Best of Both Worlds

FOR SECURITY AND PRIVACY L&

if iy < size(ay), then

b:i=1ip < size(al)T ?7b:1; » Obtain security levels with

static information-flow analysis

» without restricting the use of secrets
» accepts all programs

jr < arplir); Gp=b?0: jq;
Xp < aor|jT);

— b?0:x|;
Yr ¢ agrl d - Combine masking approaches:

» mask secret indices
» mask only values for public indices

if yp < 10 then ... else ...
else
b:=ip < size(a;),?1:Db

5/12

Flexible SLH: The Best of Both Worlds

FOR SECURITY AND PRIVACY L&

if iy < size(ay), then

b= iy < size(a;), ?b:1; » Obtain security levels with

static information-flow analysis

» without restricting the use of secrets
» accepts all programs

jr < ayplivl; jr=070:jr;

Xp <= agp|Jr;

yp < asp[b?0:x];

if b&& yr < 10 then ... else ...

else
b:=ip < size(a;),?1:Db

- Combine masking approaches:
» mask secret indices
» mask only values for public indices
» mask only secret branch conditions

5/12

FOR SECURITY AND PRIVACY L&

Security for Arbitrary Programs

<Ca 32)

source

<C7 81>

mitigation

((e), s2)

compiled

(c), s1)

6/12

Security for Arbitrary Programs

FOR SECURITY AND PRIVACY L&

<Ca 32)

source

<C7 81>

mitigation

O,

((c), s2) 7 >
compiled
< o Leakage in compiled program
<(IC]), 81> ’

7

6/12

Security for Arbitrary Programs

A 5
FOR SECURITY AND PRIVACY L&

0
<Ca SZ) > ’
source
0/ Leakage in source program
<C7 31> - ’

mitigation
(92
{(c), s2) /’ 4
compiled // . .
i 9/ Leakage in compiled program
<(IC]), 81> - ?

6/12

FOR SECURITY AND PRIVACY L&

Security for Arbitrary Programs

<Ca 52)

source

N

<C7 81>

Relative Security

O,
((c), s2) .
compiled /
)

(c), s1) Z

mitigation

6/12

Modeling Speculative Execution Attacks B

« Attacker model:

7/12

Modeling Speculative Execution Attacks

FOR SECURITY AND PRIVACY L&

- Attacker model:
» observes control flow (branch conditions) and indices of memory accesses

7/12

Modeling Speculative Execution Attacks

FOR SECURITY AND PRIVACY L&

- Attacker model:
» observes control flow (branch conditions) and indices of memory accesses
» directly controls speculation using directives

7/12

Modeling Speculative Execution Attacks

FOR SECURITY AND PRIVACY L&

« Attacker model:

» observes control flow (branch conditions) and indices of memory accesses
» directly controls speculation using directives

» chooses locations of out-of-bounds accesses using directives

7/12

Modeling Speculative Execution Attacks

FOR SECURITY AND PRIVACY)

« Attacker model:

» observes control flow (branch conditions) and indices of memory accesses
» directly controls speculation using directives

» chooses locations of out-of-bounds accesses using directives

- Modeling speculative execution:

7/12

Modeling Speculative Execution Attacks

FOR SECURITY AND PRIVACY L&

« Attacker model:

» observes control flow (branch conditions) and indices of memory accesses
» directly controls speculation using directives
» chooses locations of out-of-bounds accesses using directives

- Modeling speculative execution:
» Forward-only semantics

7/12

Modeling Speculative Execution Attacks

FOR SECURITY AND PRIVACY L&

« Attacker model:

» observes control flow (branch conditions) and indices of memory accesses
» directly controls speculation using directives
» chooses locations of out-of-bounds accesses using directives

- Modeling speculative execution:
» Forward-only semantics
— no rollbacks

7/12

Modeling Speculative Execution Attacks

FOR SECURITY AND PRIVACY L&

« Attacker model:

» observes control flow (branch conditions) and indices of memory accesses
» directly controls speculation using directives
» chooses locations of out-of-bounds accesses using directives

- Modeling speculative execution:
» Forward-only semantics
— no rollbacks
» results carry over to semantics with rollbacks

7/12

Proving Relative Security

MAX PLANCK INSTITUTE

02
<Ca 32> >
sequential
01
<C, 81> S
FvSLH
0
<(ICI)7 S9, ﬂ‘> >
’ D
speculative
i O;
(), 51,) >
1 D

8/12

Proving Relative Security LT

02
<Ca S2> >
sequential
O,
(c, 1) >
FvSLHY
Oy
((e), 52, N~
speculative ////
: o,
(c), 1, € >
((c), 51, 1) pe

8/12

Proving Relative Security

sequential

0,

<C’ S2>

Oy

~-

<C, 51>

information

flow
analysis
masking ((c), 89, F)J ;7//
speculative ////
i O
(c), 51, [>
((c), 51, 1) p

\
7

MAX PLANCK INSTITUTE

FOR SECURITY AND PRIVACY @

8/12

Proving Relative Security

MAX PLANCK INSTITUTE ({4,

02
<Ca S2> ’
sequential
o,
<Ca Sl> ’
information (@, 8o, [, 0
flow | T, P, PA) . >
analysis
ideal
_7 \,’ [F7 0/
(c, s1 !« > .
T, P, PA) D \ |deal semantics:
Oy
masking ((c), 59,)
’ D
speculative
H 01
((c), 1, [) ”
' D

8/12

Proving Relative Security

MAX PLANCK INSTITUTE (({¢%"

02
<Ca 82> ’
sequential
O
<Ca Sl> ’
information (@, 8o, [, 0
flow | T, P, PA) . >
analysis
ideal
<E7 S\I’ [F’ (9]/. \ > .
T, P, PA) D \ |deal semantics:
- speculative execution
Oy
masking c), so, [
((c), 59,) pe
speculative
Y O
(c), 51, F >
((c), 51, 1) p

8/12

Proving Relative Security

MAX PLANCK INSTITUTE (({¢%"

02
<Ca 82> ’
sequential
O
<Ca Sl> ’
information (@, 8o, [, 0
flow | T, P, PA) . >
analysis
ideal
<E7 '§I’ [F7 0]/. K > .
T, P, PA) D \ |deal semantics:
- speculative execution
O} o . . .
masking (e, 5. 0) with masking in semantics
D
speculative
Y O
(c), 51, F >
((c), 51, 1) p

8/12

Proving Relative Security

MAX PLANCK INSTITUTE ({#%"
FOR SECURITY AND PRIVACY i@

02
<Ca 82> ’
sequential
0,
<Ca 31> ’
information (@, 54, [, @}
flow >
T, P, PA
analysis B PA) D
ideal
<E7 S\I’ [F’ 0:{ \
T, P, PA) D \ Ideal semantics:
- speculative execution
masking (o), 50, B %2« with masking in semantics
y 92 . .
D » matches behaviour of compiled program
speculative
Y 01
((c), 51, € >
1, 0) p

8/12

Proving Relative Security

MAX PLANCK INSTITUTE ({#%"
FOR SECURITY AND PRIVACY i@

02
<Ca 82> ’
sequential
O
<Ca 31> ’
information (@, 54, [, !
flow | T, P, PA) | >
analysis
ideal
<E7 8\1’ [F7 0—: \
T, P, PA) S~ ldeal semantics:
‘ T : :
22‘;(;;?8 - speculative execution
masking Correctngss || %2« with masking in semantics
112 . 5
D » matches behaviour of compiled program
speculative
Y 01
((c), 51, € 4
1 0) p

8/12

Proving Relative Security wax et anci wermure (&

02
<Ca 82> >
sequential
O
<Ca 31> ’
information (@, s, I, oL
flow | T, P, PA) | >
analysis
ideal
<E7 8\1’ [F7 0—: \
T, P, PA) S~ ldeal semantics:
‘ I : :
22‘::;‘;;?8 - speculative execution
Oé . 0 . 0 0
masking Correctngss || g with masking in semantics
- D » matches behaviour of compiled program
speculative
. o; - with dynamic information-flow tracking
<(IC])7 S1y ﬂ:> D ’

8/12

Proving Relative Security T

02
<Ca 32> >
sequential 4///
o s 0 Relative Security of ideal semantics:
Cc, 81 ?
information (@, s, I, oL
flow AL >
T, P, PA 1!
analysis T >\v/ -
ideal 4//7
<E7 8\1’ [F7 01/ \
T, P, PA) S~ ldeal semantics:
‘ ™~ . :
gzx‘i’ferrds - speculative execution
masking | Correctngss || %« with masking in semantics
112 . 5
- D » matches behaviour of compiled program
speculative
. o; - with dynamic information-flow tracking
<(ICI)7 S15 ﬂ‘> D ’

8/12

Proving Relative Security T

02
<Ca 32> ’
sequential 4//%
o s 0, Relative Security of ideal semantics:
Cc, 81 ?)
/\ depends on correctness of annotations
information (@, s, I, oL
flow AL >
T, P, PA !
analysis T >\v/ -
ideal 4//7
<E7 8\1’ [F7 0—: \
T, P, PA) S~ ldeal semantics:
‘ I : :
gzx‘i’f‘errds - speculative execution
masking Correctn&lscﬁ) Oz - with maSk|ng in semantics
112 . 5
D » matches behaviour of compiled program
-
speculative
. o; - with dynamic information-flow tracking
<(ICI)7 S15 ﬂ‘> ﬂ ’

8/12

Well-Labeledness wax prac s (22

- Relative security requires correct annotations during execution

9/12

Well-Labeledness wax pranok nerirute (7

- Relative security requires correct annotations during execution
- Annotations are produced by static analysis on the initial program

9/12

Well-Labeledness wax pranok nerirute (7

- Relative security requires correct annotations during execution
- Annotations are produced by static analysis on the initial program
» not suitable for preservation

9/12

Well-Labeledness s

- Relative security requires correct annotations during execution

- Annotations are produced by static analysis on the initial program
» not suitable for preservation

* Introduce a typing-like well-labeledness predicate:

9/12

Well-Labeledness s

- Relative security requires correct annotations during execution

- Annotations are produced by static analysis on the initial program
» not suitable for preservation

* Introduce a typing-like well-labeledness predicate:

P,PA~s P',PA" I, ¢

9/12

Well-Labeledness wax pranex msmirure (67

- Relative security requires correct annotations during execution

- Annotations are produced by static analysis on the initial program
» not suitable for preservation

* Introduce a typing-like well-labeledness predicate:

P,PA~s P',PA" I, ¢

AN

annotated command

9/12

Well-Labeledness wax pranex msmirure (67

- Relative security requires correct annotations during execution

- Annotations are produced by static analysis on the initial program
» not suitable for preservation

* Introduce a typing-like well-labeledness predicate:

P,PA~s P',PA" I, ¢

e AN

initial labeling annotated command

9/12

Well-Labeledness wax pranex msmirure (67

- Relative security requires correct annotations during execution

- Annotations are produced by static analysis on the initial program
» not suitable for preservation

* Introduce a typing-like well-labeledness predicate:

P,PA - P’ PA" I, ©
yd X AN

final labeling

initial labeling annotated command

9/12

Wel I'La beled Ness MAX PLANCK INSTITUTE v

FOR SECURITY AND PRIVACY ©

Lemma

The information-flow analysis produces well-
labeled programs.

c)DFPA = (¢, P,PA’) = P,PA s P,PA’' \- ¢
p

pc

9/12

Well-Labeledness wax pLanck nsTiTuTe (67

Lemma

The information-flow analysis produces well-
labeled programs.

cHDPA — (¢ P, PA’) = P,PAw» P ,PA' - ¢
pc

pc
Lemma

|deal execution preserves well-labeledness.
P,PA~» P',PA" -, ¢C —
<Ea P K, ba pc, P7 PA> %)- <?, P, U, b, pCl, P', PA/> =

1

P,PA" » P/, PA" b,

9/12

Well-Labeledness wax pLanck nsTiTuTe (67

Lemma

The information-flow analysis produces well-
labeled programs.

cHDPA — (¢ P, PA’) = P,PAw» P ,PA' - ¢
pc

pc
Lemma

|deal execution preserves well-labeledness.
P,PA~» P',PA" |, ¢ =
(€, p, p, b, pe, P, PA) 2, (¢, p, pi, b, pc, P, PA") =

1

P PA > P, PA" v, &

9/12

Proving Relative Security

02
<Ca S2> ’
sequential
O,
<C, 51> ’
information (@, 8o, [, @
flow | T, P, PA) e >
analysis
ideal
(€ s1, 0, O
T, P, PA) P ’
Oy
masking {(c), sy,) >
’ D
speculative
H 01
((c), 1, [) 4
' D

MAX PLANCK INSTITUTE (&7
FOR SECURITY AND PRIVACY i@

10/12

Proving Relative Security L

0,
<Ca 82> ’
sequential
o,
<Ca Sl> ’
information (T, sy, I, Oy
flow T, P, PA) n
analysis
ideal Unwinding
E) 8\,) [F7 0/ i i i
(€, 81) >/ During misspeculation:
T, P, PA) D
Oy
masking {(c), 59,) ’
’ D
speculative
. vt
((c), s1,) ’
! D

10/12

Proving Relative Security T

02
<Ca 82> >
sequential
o,
<Ca Sl> ’
information (@, s, I, 0}
flow >
T, P, PA
analysis B PA) D
ideal Unwinding
¢, sy, [, o5 : . .
@ 51 : >/ During misspeculation:
T, P, PA) 7
- all secret values are masked
Oy
masking c), 8o, [»
((c), 59,) pe
speculative
4 O
c), sq, [>
((c), s1, 1) s

10/12

Proving Relative Security T

02
<Ca 32> >
sequential
O,
<Ca Sl> ’
information (@, 84, [, O}
flow)
T, P, PA
analysis B PA) D
ideal Unwinding
¢, sy, [, o5 : : .
@ 51 ! >/ During misspeculation:
T, P, PA) 7
- all secret values are masked
o, - all public values are equal in both executions
masking c), 8o, [»
{(c), 55,) .
speculative
i O
c), s, [>
{(c); 54, [) s

10/12

Proving Relative Security T

(C’ 32>

sequential /

Same behaviour before misspeculation

02
01
<Ca Sl> /

information (@, 84, [, O}
flow)
T, P, PA
analysis T >\v/ D
ideal / Unwinding
¢, sy, [, o5 : : .
@ 51 ! >/ During misspeculation:
T, P, PA) -
- all secret values are masked
o, - all public values are equal in both executions
masking c), 8o, [»
((c), 52, [) p
speculative
. vt
c), s, [>
((c), 51,) p

10/12

Proving Relative Security L

(C’ 32>

sequential /

Same behaviour before misspeculation

02
01
<Ca Sl> /

information (@, 54, [, !
flow | T, P PA7 | >
analysis v

¢, sy, [, O, : : .
@ 51 | ' During misspeculation:
T, P, PA) 1|
Backwards - all secret values are masked
Compiler o, - all public values are equal in both executions
masking Correctngss |1,) S
D
speculative
. 01
<(ICI)7 S1y ﬂ‘> ’

D 10/12

Proving Relative Security

02
<Ca S2> ’
sequential
o,
<C, 51> ’
information (@, 8o, [,)
flow | T, P, PA) e >
analysis
ideal
(€ s1, I, Y
T, P, PA) P ’
O
masking ((c), 89, F)J ;7//
, D
speculative ////
4 01
((c), 1, [) 4
' D

MAX PLANCK INSTITUTE ((\¢4"
FOR SECURITY AND PRIVACY L

10/12

Conclusions wax pranci werirute (167

- Secure: fully mechanized relative security proof in Rocq

11/12

Conclusions wax pranci werirute (167

- Secure: fully mechanized relative security proof in Rocq
+ General: accepts all programs

11/12

Conclusions wax pranci werirute (167

- Secure: fully mechanized relative security proof in Rocq
+ General: accepts all programs
- Efficient: only inserts protections where needed

11/12

Conclusions wax pranci werirute (167

Secure: fully mechanized relative security proof in Rocq
General: accepts all programs
Efficient: only inserts protections where needed

Generalization of both Selective SLH and Ultimate SLH

11/12

Conclusions max eLancicmerote (0

Secure: fully mechanized relative security proof in Rocq
General: accepts all programs
Efficient: only inserts protections where needed

Generalization of both Selective SLH and Ultimate SLH

» coincides with Selective SLH on programs respecting the CCT discipline

11/12

Conclusions max eLancicmerote (0

- Secure: fully mechanized relative security proof in Rocq
+ General: accepts all programs
- Efficient: only inserts protections where needed

« Generalization of both Selective SLH and Ultimate SLH

» coincides with Selective SLH on programs respecting the CCT discipline
» coincides with Ultimate SLH if everything is labeled as secret

11/12

Conclusions e

Secure: fully mechanized relative security proof in Rocq
General: accepts all programs
Efficient: only inserts protections where needed

Generalization of both Selective SLH and Ultimate SLH

» coincides with Selective SLH on programs respecting the CCT discipline
» coincides with Ultimate SLH if everything is labeled as secret
Mechanized security proofs for both mitigations obtained as corollaries

11/12

Future Work wax pranci werirute (167

* Practical implementation and evaluation of FSLH

12/12

Future Work MAX PLANCK INSTITUTE (¢

* Practical implementation and evaluation of FSLH
» at what level should analysis be performed?

12/12

Future Work RN

* Practical implementation and evaluation of FSLH
» at what level should analysis be performed?
» preservation by other compilation passes?

12/12

Future Work RN

* Practical implementation and evaluation of FSLH
» at what level should analysis be performed?
» preservation by other compilation passes?

» Investigation of other LLVM SLH implementations

12/12

Future Work N

* Practical implementation and evaluation of FSLH
» at what level should analysis be performed?
» preservation by other compilation passes?

» Investigation of other LLVM SLH implementations
» too much complexity for fully mechanized proofs

12/12

Future Work T

* Practical implementation and evaluation of FSLH
» at what level should analysis be performed?
» preservation by other compilation passes?

» Investigation of other LLVM SLH implementations
» too much complexity for fully mechanized proofs
» Property-based testing as a pragmatic compromise

12/12

Future Work T

* Practical implementation and evaluation of FSLH
» at what level should analysis be performed?
» preservation by other compilation passes?

» Investigation of other LLVM SLH implementations
» too much complexity for fully mechanized proofs
» Property-based testing as a pragmatic compromise

 Mitigations for other SPECTRE variants

12/12

Future Work MAX PLANCK INSTITUTE (7

 Practical implementation and evaluation of FSLH
» at what level should analysis be performed?
» preservation by other compilation passes?

» Investigation of other LLVM SLH implementations
» too much complexity for fully mechanized proofs
» Property-based testing as a pragmatic compromise

 Mitigations for other SPECTRE variants
» e.g. prediction of indirect branch targets (ongoing work) and return addresses

12/12

Bibliography wax Lanorc nsrirure (57

Barthe, Gilles, Sunjay Cauligi, Benjamin Grégoire, et al. 2021. “High-Assurance
Cryptography in the Spectre Era.” In “42nd IEEE Symposium on Security and
Privacy, SP." Special issue, 42nd IEEE Symposium on Security and Privacy, SP, 1884—-901.
https://doi.org/10.1109/SP40001.2021.00046.

Shivakumar, Basavesh Ammanaghatta, Jack Barnes, Gilles Barthe, et al. 2023.
“Spectre Declassified: Reading from the Right Place at the Wrong Time.” In “44th
IEEE Symposium on Security and Privacy, SP." Special issue, 44th IEEE Symposium on
Security and Privacy, SP, 1753—-70. https://doi.org/10.1109/SP46215.2023.10179355.

Zhang, Zhiyuan, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, and
Yuval Yarom. 2023. “Ultimate SLH: Taking Speculative Load Hardening to the Next
Level.” In 32nd USENIX Security Symposium, edited by Joseph A. Calandrino and
Carmela Troncoso, 32nd USENIX Security Symposium. USENIX Association. https://
www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-sih.

13/12

https://doi.org/10.1109/SP40001.2021.00046
https://doi.org/10.1109/SP46215.2023.10179355
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh

Speculative Semantics

v = [ae],

(X 1= ae, p, 1, b) ~x(skip, [X — v]p, u, b)

SPEC_ASGN

<Cf? Ps I, b) {_01>3<C;: p!a p”? bf)

SPEC_SEQ_STEP R, PR—
(eri c2ypips 0) —x{cii casps s 1)

SPEC_WHILE
Cwhite = While be do ¢

(Cyhiles Py 115 D) L)S(if be then ¢; cynie €lse skip, p, . b)

SPEC_SEQ_SKIP o
(skip; ¢, p, i, b) —=x{c, p, 1, D)

SPEC_IF
b = [be],

(if be then cr else cr, p, . b) P—’?%:—b’—)s(cb:,p,u,b)

SPEC_IF_FORCE
b = [be],

(if be then cr else cp, p, p,b) pranchl s (C—pyy Py 1y T)

force

SPEC_READ

i = [ie], v=1[ali]], i<lal,
readai

<X < aliel, Py Hs b> —)3<Skip, [X = ’U]p’ M, b)
step

SPEC_READ FORCE

i = [ie], v ={[b[j]l,

(X + aliel, p, i, T) %@(skip, X 5 v]p, p, T)
oadb j

P> |a|u) < |b|#f

SPEC_WRITE
i = [ie], v=lae], i<]aly

(alie] « ae, p, u, b) 2% (skip, p, [ali] + v]u, b)
step
SPEC_WRITE_FORCE

i=[iel, v=[a], i>al, j<]bl,

(alie] « ae, p, i, T) 2% (skip, p, [b[j] — v]u, T)

storeb j

MAX PLANCK INSTITUTE ((\¢4"
FOR SECURITY AND PRIVACY T

14 /12

IFC type system s

WT_SKip WT_ASGN WT_SEQ WT_IF
Pla)={¢ pcl TP(X) P;PAlk,. c; P;PAF, c; P(be)=! P;PAF, . ,c; P;PAF, ¢
P;PA -, skip P;PAF, X :=a P;PAF, c1; ¢ P;PA |-, if be then c¢; else ¢
WT_WHILE WT_AREAD WT_AWRITE
P(be)=1(P;PAtF,. . c P(i)=/(pclilLPA(a) CP(X) P(i)="(Ple)={ pclil It T PA(a)
P;PA . while be do ¢ P;PA -, X+ alil P;PAF,. ali] < e

15/12

Ideal Semantics (IFC)

IDEAL_IF
P(be) =1 b = (L —b) A [be],

(if be then cy else cr, p, i1, b) %(cbup, 1, b)

IDEAL_IF_FORCE
P(be) =1 b = (£V —b) A [be],

<lf be then cy else CFap:uab> %(C—'b’apa s T)

IDEAL_READ

v, . [0 if (—~4;VP(X))Ab
Plie) =L &= lie], otherwise
v=[ali]], i<lal,

(X < aliel, p, 1, b) %(Skip, (X = v]p, pt, b)

MAX PLANCK INSTITUTE ({¢4”
FOR SECURITY AND PRIVACY i@

IDEAL_READ_FORCE
P(ie) -P(X) i=[ie],
v=[blj]l, i>lal, 7 <Ibls

readai

(X < aliel, p, p, T) m(kip, [X = v]p, u, T)

IDEAL_WRITE
.0 if (—0;V—l)Ab
= {[[ie]] p Otherwise
P(ie) ={; Plae)=1{ v=][ae], i<|a|,

writeat

(alie] < ae, p, u, b) ﬁ(skip,p, [a[i] — v]u, b)
step

IDEAL_WRITE_FORCE
P(ie) P(ae)
i = [ie], v=l[ae], i>lal, j<|bl,

write a i

(alie] < ae, p,uu, T) W(skip,p, [b[7] — v]p, T)

16/12

Ideal Semantics (annotated programs)

FOR SECURITY AND PRIVACY

Plbey=T b = (£V —b) A [be],

IDEAL_IF
(if beas then cT else Cf, p, p, b, pc, P, PA) Mkg(branch PC Ty Py iy by pe LI L P PA)
step
IDEAL_IF_FORCE W V= (V=) A |[be]]p
(if beas then ¢t else cF, p, u, b, pc, P, PA) %(branch pc ¢y py iy T, pe L £, P, PA)
orce
. 1 b if [¢ b .
Pliey=7T; i= 0. 7 NS = 0 lfo.‘A i < lal,
lie], otherwise [ali]], otherwise
IDEAL_READ ——

(Xar, < aliear], py p, b, pe, Py PA) ——5(skip, [X +— v]p, u, b, pc, [X = Ix|P, PA)

. . if [. .
Piief i = [ie, v={° o PO s el < bl

[b[j]],. otherwise

IDEAL_READ_FORCE

readai

(Xae, < aliear],p,p, T,pc, P, PA) ~—~ﬁ\i (skip, [X +> v]p, u, T, pc, [X > (4| P, PA)

IDEAL_BRANCH

IDEAL_SEQ_SKIP
? (€, p, p,b,pc, P, PA} (o U pd P PA)

terminal ¢;

(€T a(pr.pary €2, Py 1y b, pe, P, PAY =x(23, p, i1, b, pc-after ¢ pc, P, PA) (branch f c,. .. } T);(branch (c,...)
L (

Fig. 12: Ideal semantics for FVSLH" (selected rules)

17712

Flow-sensitive static analysis B

{(skip)),.™ =(skip, P, PA)
(X := e)p™ =(X := e, [X > P(e)]P, PA)
((crs e2)p™ =(cTia(py pa,) C2: P2, PA3) where (c7,Py,PAy) = ((c/)b
and (C‘z,PQ, PAQ) ((2)>P1 PAL
(if be then c; else c2))p™ =(if beap(s) then €7 else €3, Py U Py, PAy U PAy) where (c7,P1,PA1) = (1)) pive)
P.PA
and (CQ,PQ,PAQ) = ((»m‘uP(be}
(while be do c)):™ =(while beap, (b) dO Ca(py, pan)» Phic; PAfx)
. P PA" .
where (P, PAg) = fix (A(P', PA').let (¢, P, PA") = () [T} ., im0 (P, PA") LU (P, PA))
(X = alil) ™ =(Xapeuri)uracs) < aliapg)], [X — pe U P(i) U PA(a)]P, PA)

(alil « e)PPA =(aliap)] « e,P,[a+ PA(a) Lipc LI P(i) LI P(e)|PA)

Fig. 11: Flow-sensitive IFC analysis generating annotated commands

18/12

Well-Labeledness wexgaangismryrs (6

WL_WHILE
Pi(be) C lp, branch-free ¢
(P1,PA,) C (P',PA") (P',PA") C (P, PAs)

Pi,PAy) C (P, PA -
WL_SKIP (P1) E (P 2) PI:PA”\'*P!:PA’ l_pcl_lf;,e Cl

Py, PA Ps, PAs |, ski i C
1, FAy ~ Po, FA3 7pe SK1P Py, PA; ~» Py, PA; I, (while beay, do Ca(pr pary)

([X — Pl(e)]Pl,PAl) E P2,PA2

WL_ASGN WL_AREAD
P1,PAy ~ Py, PAs |_pc (X :=e) Pl(é’)gfz pCEEx
branch-freec; Py,PA; ~ P',PA" -, ¢1 6; Clx PA1(a) T Ux ([X+— €x|P1, PA1) C (P2, PA2)
, i

WL S50 P',PA" ~ Pa, PAs = (pe-afiercs pe) C2 Py, PAy ~> Py, PAs) (Xar, < aleay,])

N Py, PAy ~ P2, PAs bpe (CTia(p par) C2) WL_AWRITE

WL_IF B B Pi(i)E L

Py(be) C 0, branch-free ¢ branch-free ¢; (P1,]a PA(a) Lpc i€ U Py (e)]PAy) T (Pa, PAs)

P1,PAy ~ Py, PAs bFpeyg, €1 P1,PAy ~ Po, PAs Fpeye, ©2
P1,PAy ~ Py, PAs) (if beay, then ¢ else ¢3)

Pl,PAl ~* PQ,PAQ |_pc (a[i@fj] — 6’)

Pl,PAl N PQ,PAQ l_pc Cc

WL_BRANCH —
Pl,PAl ~ Pz,PAz |_pc (branch 14 C)

19/12

ISLH must protect stores s

if i < ieCfetS_Sikze then - out-of-bounds i could write to a[0]
crets <- K€y, i I
ie<_ a[éﬂ y - read from public array a is unprotected
if x thenf B » reads speculatively stored secret

20/12

	Why FSLH?
	Spectre (v1)
	Previous Work: Selective SLH
	Previous Work: Ultimate SLH
	Flexible SLH: The Best of Both Worlds
	Security for Arbitrary Programs
	Modeling Speculative Execution Attacks
	Proving Relative Security
	Well-Labeledness
	Proving Relative Security
	Conclusions
	Future Work
	Bibliography
	Speculative Semantics
	IFC type system
	Ideal Semantics (IFC)
	Ideal Semantics (annotated programs)
	Flow-sensitive static analysis
	Well-Labeledness
	iSLH must protect stores

