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‣ preservation by other compilation passes?

• Investigation of other LLVM SLH implementations

‣ too much complexity for fully mechanized proofs

‣ Property-based testing as a pragmatic compromise

• Mitigations for other SPECTRE variants

‣ e.g. prediction of indirect branch targets (ongoing work) and return addresses
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iSLH must protect stores FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

  if i < secrets_size then

    secrets[i] <- key;

    x <- a[0];

    if x then...

• out-of-bounds i could write to a[0]

• read from public array a is unprotected
‣ reads speculatively stored secret
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