
FSLH: Flexible Mechanized Speculative

Load Hardening FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

Jonathan Baumann1,2, Roberto Blanco1,3, Léon Ducruet1,4, Sebastian Harwig1,5, Cătălin Hrițcu1

1MPI-SP, Germany 2ENS Paris-Saclay, France 3TU/e, Netherlands 4ENS Lyon, France 5Ruhr University Bochum, Germany

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses:

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023)

• sparse protection, low overhead

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023)

• sparse protection, low overhead

• protects only cryptographic code

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023)

• sparse protection, low overhead

• protects only cryptographic code

Ultimate SLH (Zhang et al. 2023)

• exhaustive, high overhead

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023)

• sparse protection, low overhead

• protects only cryptographic code

Ultimate SLH (Zhang et al. 2023)

• exhaustive, high overhead

• protects all programs

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023)

• sparse protection, low overhead

• protects only cryptographic code

Ultimate SLH (Zhang et al. 2023)

• exhaustive, high overhead

• protects all programs

Flexible SLH (published at CSF’25)

sparse protections for all programs

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023)

• sparse protection, low overhead

• protects only cryptographic code

Ultimate SLH (Zhang et al. 2023)

• exhaustive, high overhead

• protects all programs

Flexible SLH (published at CSF’25)

sparse protections for all programs

• Existing mitigations rely on manual security proofs

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023)

• sparse protection, low overhead

• protects only cryptographic code

Ultimate SLH (Zhang et al. 2023)

• exhaustive, high overhead

• protects all programs

Flexible SLH (published at CSF’25)

sparse protections for all programs

• Existing mitigations rely on manual security proofs

‣ First machine-checked proofs for Selective, Ultimate, and Flexible SLH

1 / 12

Why FSLH? FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Spectre Attacks remain a threat

• Existing mitigations have complementary strengths and weaknesses:

Selective SLH (Shivakumar et al. 2023)

• sparse protection, low overhead

• protects only cryptographic code

Ultimate SLH (Zhang et al. 2023)

• exhaustive, high overhead

• protects all programs

Flexible SLH (published at CSF’25)

sparse protections for all programs

• Existing mitigations rely on manual security proofs

‣ First machine-checked proofs for Selective, Ultimate, and Flexible SLH

Rocq development: ~ 4300 lines

1 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚓 ← 𝚊1[𝚒];

𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚓 ← 𝚊1[𝚒];

𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

👀 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1)

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚓 ← 𝚊1[𝚒];

𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

👀 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1)

👀 𝚒

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚓 ← 𝚊1[𝚒];

𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

👀 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1)

👀 𝚒

👀 𝚊1[𝚒]

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚓 ← 𝚊1[𝚒];

𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

let 𝚒 = 4

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚓 ← 𝚊1[𝚒];

𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

let 𝚒 = 4

speculates by

predicting branch

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚓 ← 𝚊1[𝚒];

𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

let 𝚒 = 4

speculates by

predicting branch

2 / 12

Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚓 ← 𝚊1[𝚒];

𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

let 𝚒 = 4

speculates by

predicting branch

👀 secret

2 / 12

Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚓 ← 𝚊1 [𝚒];

𝚡 ← 𝚊2 [𝚓]

𝚎𝚕𝚜𝚎

3 / 12

Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋];

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋]

𝚎𝚕𝚜𝚎

• CCT type system:

‣ variables and arrays public or secret

3 / 12

Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋];

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢 ← 𝚊3𝕋[𝚡𝔽];

𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• CCT type system:

‣ variables and arrays public or secret

‣ secret values may not be used as indices

or branch conditions

3 / 12

Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋];

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢 ← 𝚊3𝕋[𝚡𝔽];

𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• CCT type system:

‣ variables and arrays public or secret

‣ secret values may not be used as indices

or branch conditions

• maintain a misspeculation flag

3 / 12

Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋];

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢 ← 𝚊3𝕋[𝚡𝔽];

𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• CCT type system:

‣ variables and arrays public or secret

‣ secret values may not be used as indices

or branch conditions

• maintain a misspeculation flag

‣ updated with constant-time conditionals

3 / 12

Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢 ← 𝚊3𝕋[𝚡𝔽];

𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• CCT type system:

‣ variables and arrays public or secret

‣ secret values may not be used as indices

or branch conditions

• maintain a misspeculation flag

‣ updated with constant-time conditionals

• mask reads to public variables

3 / 12

Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢 ← 𝚊3𝕋[𝚡𝔽];

𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• CCT type system:

‣ variables and arrays public or secret

‣ secret values may not be used as indices

or branch conditions

• maintain a misspeculation flag

‣ updated with constant-time conditionals

• mask reads to public variables

‣ secret variables can not leak anyway

3 / 12

Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢 ← 𝚊3𝕋[𝚡𝔽];

𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• CCT type system:

‣ variables and arrays public or secret

‣ secret values may not be used as indices

or branch conditions

• maintain a misspeculation flag

‣ updated with constant-time conditionals

• mask reads to public variables

‣ secret variables can not leak anyway

• efficient mitigation with only minimal masking

3 / 12

Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢 ← 𝚊3𝕋[𝚡𝔽];

𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• CCT type system:

‣ variables and arrays public or secret

‣ secret values may not be used as indices

or branch conditions

• maintain a misspeculation flag

‣ updated with constant-time conditionals

• mask reads to public variables

‣ secret variables can not leak anyway

• efficient mitigation with only minimal masking

‣ for a very limited class of programs

3 / 12

Previous Work: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 𝚋 : 1;

𝚓 ← 𝚊1 [𝚒];

𝚡 ← 𝚊2 [𝚓];

𝚢 ← 𝚊3 [𝚡];

𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 1 : 𝚋

• no type system, mask everything

4 / 12

Previous Work: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 𝚋 : 1;

𝚓 ← 𝚊1 [𝚋 ? 0 : 𝚒];

𝚡 ← 𝚊2 [𝚋 ? 0 : 𝚓];

𝚢 ← 𝚊3 [𝚋 ? 0 : 𝚡];

𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 1 : 𝚋

• no type system, mask everything

• mask all indices

4 / 12

Previous Work: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 𝚋 : 1;

𝚓 ← 𝚊1 [𝚋 ? 0 : 𝚒];

𝚡 ← 𝚊2 [𝚋 ? 0 : 𝚓];

𝚢 ← 𝚊3 [𝚋 ? 0 : 𝚡];

𝚒𝚏 𝚋 && 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 1 : 𝚋

• no type system, mask everything

• mask all indices

• mask branch conditions as well

4 / 12

Previous Work: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 𝚋 : 1;

𝚓 ← 𝚊1 [𝚋 ? 0 : 𝚒];

𝚡 ← 𝚊2 [𝚋 ? 0 : 𝚓];

𝚢 ← 𝚊3 [𝚋 ? 0 : 𝚡];

𝚒𝚏 𝚋 && 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 1 : 𝚋

• no type system, mask everything

• mask all indices

• mask branch conditions as well

• mask other leaking instructions

4 / 12

Previous Work: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 𝚋 : 1;

𝚓 ← 𝚊1 [𝚋 ? 0 : 𝚒];

𝚡 ← 𝚊2 [𝚋 ? 0 : 𝚓];

𝚢 ← 𝚊3 [𝚋 ? 0 : 𝚡];

𝚒𝚏 𝚋 && 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 1 : 𝚋

• no type system, mask everything

• mask all indices

• mask branch conditions as well

• mask other leaking instructions

• applies to all programs

4 / 12

Previous Work: Ultimate SLH (Zhang et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 𝚋 : 1;

𝚓 ← 𝚊1 [𝚋 ? 0 : 𝚒];

𝚡 ← 𝚊2 [𝚋 ? 0 : 𝚓];

𝚢 ← 𝚊3 [𝚋 ? 0 : 𝚡];

𝚒𝚏 𝚋 && 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) ? 1 : 𝚋

• no type system, mask everything

• mask all indices

• mask branch conditions as well

• mask other leaking instructions

• applies to all programs

‣ causes high overhead (150%)

4 / 12

Flexible SLH: The Best of Both Worlds FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢 ← 𝚊3𝕋[𝚡𝔽];

𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• Obtain security levels with

static information-flow analysis

5 / 12

Flexible SLH: The Best of Both Worlds FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢𝔽 ← 𝚊3𝕋[𝚡𝔽];

𝚒𝚏 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• Obtain security levels with

static information-flow analysis

‣ without restricting the use of secrets

5 / 12

Flexible SLH: The Best of Both Worlds FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢𝔽 ← 𝚊3𝕋[𝚡𝔽];

𝚒𝚏 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• Obtain security levels with

static information-flow analysis

‣ without restricting the use of secrets

‣ accepts all programs

5 / 12

Flexible SLH: The Best of Both Worlds FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢𝔽 ← 𝚊3𝕋[𝚡𝔽];

𝚒𝚏 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• Obtain security levels with

static information-flow analysis

‣ without restricting the use of secrets

‣ accepts all programs

• Combine masking approaches:

5 / 12

Flexible SLH: The Best of Both Worlds FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢𝔽 ← 𝚊3𝕋[𝚋 ? 0 : 𝚡];

𝚒𝚏 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• Obtain security levels with

static information-flow analysis

‣ without restricting the use of secrets

‣ accepts all programs

• Combine masking approaches:

‣ mask secret indices

5 / 12

Flexible SLH: The Best of Both Worlds FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢𝔽 ← 𝚊3𝕋[𝚋 ? 0 : 𝚡];

𝚒𝚏 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• Obtain security levels with

static information-flow analysis

‣ without restricting the use of secrets

‣ accepts all programs

• Combine masking approaches:

‣ mask secret indices

‣ mask only values for public indices

5 / 12

Flexible SLH: The Best of Both Worlds FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;

𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];

𝚢𝔽 ← 𝚊3𝕋[𝚋 ? 0 : 𝚡];

𝚒𝚏 𝚋 && 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋
? 1 : 𝚋

• Obtain security levels with

static information-flow analysis

‣ without restricting the use of secrets

‣ accepts all programs

• Combine masking approaches:

‣ mask secret indices

‣ mask only values for public indices

‣ mask only secret branch conditions

5 / 12

Security for Arbitrary Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

mitigation

𝒪︀1

𝒪︀2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

compiled

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

6 / 12

Security for Arbitrary Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

mitigation

𝒪︀1

𝒪︀2

Leakage in compiled program

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

compiled

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

6 / 12

Security for Arbitrary Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀′
1

𝒪︀′
2

Leakage in source program

mitigation

𝒪︀1

𝒪︀2

Leakage in compiled program

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

compiled

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

6 / 12

Security for Arbitrary Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀′
1

𝒪︀′
2

mitigation

𝒪︀1

𝒪︀2

Relative Security

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

compiled

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

6 / 12

Modeling Speculative Execution Attacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Attacker model:

7 / 12

Modeling Speculative Execution Attacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Attacker model:

‣ observes control flow (branch conditions) and indices of memory accesses

7 / 12

Modeling Speculative Execution Attacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Attacker model:

‣ observes control flow (branch conditions) and indices of memory accesses

‣ directly controls speculation using directives

7 / 12

Modeling Speculative Execution Attacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Attacker model:

‣ observes control flow (branch conditions) and indices of memory accesses

‣ directly controls speculation using directives

‣ chooses locations of out-of-bounds accesses using directives

7 / 12

Modeling Speculative Execution Attacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Attacker model:

‣ observes control flow (branch conditions) and indices of memory accesses

‣ directly controls speculation using directives

‣ chooses locations of out-of-bounds accesses using directives

• Modeling speculative execution:

7 / 12

Modeling Speculative Execution Attacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Attacker model:

‣ observes control flow (branch conditions) and indices of memory accesses

‣ directly controls speculation using directives

‣ chooses locations of out-of-bounds accesses using directives

• Modeling speculative execution:

‣ Forward-only semantics (Barthe et al. 2021)

7 / 12

Modeling Speculative Execution Attacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Attacker model:

‣ observes control flow (branch conditions) and indices of memory accesses

‣ directly controls speculation using directives

‣ chooses locations of out-of-bounds accesses using directives

• Modeling speculative execution:

‣ Forward-only semantics (Barthe et al. 2021)

– no rollbacks

7 / 12

Modeling Speculative Execution Attacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Attacker model:

‣ observes control flow (branch conditions) and indices of memory accesses

‣ directly controls speculation using directives

‣ chooses locations of out-of-bounds accesses using directives

• Modeling speculative execution:

‣ Forward-only semantics (Barthe et al. 2021)

– no rollbacks

‣ results carry over to semantics with rollbacks

7 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

FvSLH∀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

8 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

FvSLH∀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

8 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

8 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Ideal semantics:

8 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Ideal semantics:

• speculative execution

8 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Ideal semantics:

• speculative execution

• with masking in semantics

8 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Ideal semantics:

• speculative execution

• with masking in semantics

‣ matches behaviour of compiled program

8 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Backwards

Compiler

Correctness

Backwards

Compiler

Correctness

Ideal semantics:

• speculative execution

• with masking in semantics

‣ matches behaviour of compiled program

8 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Backwards

Compiler

Correctness

Backwards

Compiler

Correctness

Ideal semantics:

• speculative execution

• with masking in semantics

‣ matches behaviour of compiled program

• with dynamic information-flow tracking

8 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Backwards

Compiler

Correctness

Backwards

Compiler

Correctness

Ideal semantics:

• speculative execution

• with masking in semantics

‣ matches behaviour of compiled program

• with dynamic information-flow tracking

Relative Security of ideal semantics:

8 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Backwards

Compiler

Correctness

Backwards

Compiler

Correctness

Ideal semantics:

• speculative execution

• with masking in semantics

‣ matches behaviour of compiled program

• with dynamic information-flow tracking

Relative Security of ideal semantics:

⚠️ depends on correctness of annotations

8 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

9 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

• Annotations are produced by static analysis on the initial program

9 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

• Annotations are produced by static analysis on the initial program

‣ not suitable for preservation

9 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

• Annotations are produced by static analysis on the initial program

‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

9 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

• Annotations are produced by static analysis on the initial program

‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

9 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

• Annotations are produced by static analysis on the initial program

‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated command

9 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

• Annotations are produced by static analysis on the initial program

‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated commandinitial labeling

9 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

• Annotations are produced by static analysis on the initial program

‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated commandinitial labeling

final labeling

9 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

• Annotations are produced by static analysis on the initial program

‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated commandinitial labeling

final labeling

Lemma

The information-flow analysis produces well-

labeled programs.

⟪𝑐⟫𝑃,𝑃𝐴
𝑝𝑐 = (𝑐, 𝑃′, 𝑃𝐴′) ⇒ 𝑃, 𝑃𝐴 ⇝ 𝑃′, 𝑃𝐴′ ⊢𝑝𝑐 𝑐

9 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

• Annotations are produced by static analysis on the initial program

‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated commandinitial labeling

final labeling

Lemma

The information-flow analysis produces well-

labeled programs.

⟪𝑐⟫𝑃,𝑃𝐴
𝑝𝑐 = (𝑐, 𝑃′, 𝑃𝐴′) ⇒ 𝑃, 𝑃𝐴 ⇝ 𝑃′, 𝑃𝐴′ ⊢𝑝𝑐 𝑐

Lemma

Ideal execution preserves well-labeledness.

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐 ⇒

⟨𝑐, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →𝒪︀

𝒟︀ i ⟨𝑐′, 𝜌, 𝜇, 𝑏, 𝑝𝑐′, 𝑃′, 𝑃𝐴′⟩ ⇒

𝑃′, 𝑃𝐴′ ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐′ 𝑐′

9 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

• Annotations are produced by static analysis on the initial program

‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated commandinitial labeling

final labeling

Lemma

The information-flow analysis produces well-

labeled programs.

⟪𝑐⟫𝑃,𝑃𝐴
𝑝𝑐 = (𝑐, 𝑃′, 𝑃𝐴′) ⇒ 𝑃, 𝑃𝐴 ⇝ 𝑃′, 𝑃𝐴′ ⊢𝑝𝑐 𝑐

Lemma

Ideal execution preserves well-labeledness.

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐 ⇒

⟨𝑐, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →𝒪︀

𝒟︀ i ⟨𝑐′, 𝜌, 𝜇, 𝑏, 𝑝𝑐′, 𝑃′, 𝑃𝐴′⟩ ⇒

𝑃′, 𝑃𝐴′ ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐′ 𝑐′

9 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Unwinding

During misspeculation:

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Unwinding

During misspeculation:

• all secret values are masked

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Unwinding

During misspeculation:

• all secret values are masked

• all public values are equal in both executions

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Unwinding

During misspeculation:

• all secret values are masked

• all public values are equal in both executions

Same behaviour before misspeculation

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

Backwards

Compiler

Correctness

Backwards

Compiler

Correctness

Unwinding

During misspeculation:

• all secret values are masked

• all public values are equal in both executions

Same behaviour before misspeculation

10 / 12

Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪︀1

𝒪︀2

information

flow

analysis

masking

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

𝒪︀′
1

𝒟︀

𝒪︀′
2

𝒟︀

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗,

𝕋, 𝑃, 𝑃𝐴⟩

10 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Secure: fully mechanized relative security proof in Rocq

11 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Secure: fully mechanized relative security proof in Rocq

• General: accepts all programs

11 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Secure: fully mechanized relative security proof in Rocq

• General: accepts all programs

• Efficient: only inserts protections where needed

11 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Secure: fully mechanized relative security proof in Rocq

• General: accepts all programs

• Efficient: only inserts protections where needed

• Generalization of both Selective SLH (Shivakumar et al. 2023) and Ultimate SLH (Zhang

et al. 2023):

11 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Secure: fully mechanized relative security proof in Rocq

• General: accepts all programs

• Efficient: only inserts protections where needed

• Generalization of both Selective SLH (Shivakumar et al. 2023) and Ultimate SLH (Zhang

et al. 2023):

‣ coincides with Selective SLH on programs respecting the CCT discipline

11 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Secure: fully mechanized relative security proof in Rocq

• General: accepts all programs

• Efficient: only inserts protections where needed

• Generalization of both Selective SLH (Shivakumar et al. 2023) and Ultimate SLH (Zhang

et al. 2023):

‣ coincides with Selective SLH on programs respecting the CCT discipline

‣ coincides with Ultimate SLH if everything is labeled as secret

11 / 12

Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Secure: fully mechanized relative security proof in Rocq

• General: accepts all programs

• Efficient: only inserts protections where needed

• Generalization of both Selective SLH (Shivakumar et al. 2023) and Ultimate SLH (Zhang

et al. 2023):

‣ coincides with Selective SLH on programs respecting the CCT discipline

‣ coincides with Ultimate SLH if everything is labeled as secret

• Mechanized security proofs for both mitigations obtained as corollaries

11 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH

‣ at what level should analysis be performed?

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH

‣ at what level should analysis be performed?

‣ preservation by other compilation passes?

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH

‣ at what level should analysis be performed?

‣ preservation by other compilation passes?

• Investigation of other LLVM SLH implementations

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH

‣ at what level should analysis be performed?

‣ preservation by other compilation passes?

• Investigation of other LLVM SLH implementations

‣ too much complexity for fully mechanized proofs

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH

‣ at what level should analysis be performed?

‣ preservation by other compilation passes?

• Investigation of other LLVM SLH implementations

‣ too much complexity for fully mechanized proofs

‣ Property-based testing as a pragmatic compromise

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH

‣ at what level should analysis be performed?

‣ preservation by other compilation passes?

• Investigation of other LLVM SLH implementations

‣ too much complexity for fully mechanized proofs

‣ Property-based testing as a pragmatic compromise

• Mitigations for other SPECTRE variants

12 / 12

Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Practical implementation and evaluation of FSLH

‣ at what level should analysis be performed?

‣ preservation by other compilation passes?

• Investigation of other LLVM SLH implementations

‣ too much complexity for fully mechanized proofs

‣ Property-based testing as a pragmatic compromise

• Mitigations for other SPECTRE variants

‣ e.g. prediction of indirect branch targets (ongoing work) and return addresses

12 / 12

Bibliography FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

Barthe, Gilles, Sunjay Cauligi, Benjamin Grégoire, et al. 2021. “High-Assurance

Cryptography in the Spectre Era.” In “42nd IEEE Symposium on Security and

Privacy, SP.” Special issue, 42nd IEEE Symposium on Security and Privacy, SP, 1884–901.

https://doi.org/10.1109/SP40001.2021.00046.

Shivakumar, Basavesh Ammanaghatta, Jack Barnes, Gilles Barthe, et al. 2023.

“Spectre Declassified: Reading from the Right Place at the Wrong Time.” In “44th

IEEE Symposium on Security and Privacy, SP.” Special issue, 44th IEEE Symposium on

Security and Privacy, SP, 1753–70. https://doi.org/10.1109/SP46215.2023.10179355.

Zhang, Zhiyuan, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, and

Yuval Yarom. 2023. “Ultimate SLH: Taking Speculative Load Hardening to the Next

Level.” In 32nd USENIX Security Symposium, edited by Joseph A. Calandrino and

Carmela Troncoso, 32nd USENIX Security Symposium. USENIX Association. https://

www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh.

13 / 12

https://doi.org/10.1109/SP40001.2021.00046
https://doi.org/10.1109/SP46215.2023.10179355
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh

Speculative Semantics FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

14 / 12

IFC type system FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

15 / 12

Ideal Semantics (IFC) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

16 / 12

Ideal Semantics (annotated programs) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

17 / 12

Flow-sensitive static analysis FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

18 / 12

Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

19 / 12

iSLH must protect stores FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

 if i < secrets_size then

 secrets[i] <- key;

 x <- a[0];

 if x then...

• out-of-bounds i could write to a[0]

• read from public array a is unprotected
‣ reads speculatively stored secret

20 / 12

	Why FSLH?
	Spectre (v1)
	Previous Work: Selective SLH
	Previous Work: Ultimate SLH
	Flexible SLH: The Best of Both Worlds
	Security for Arbitrary Programs
	Modeling Speculative Execution Attacks
	Proving Relative Security
	Well-Labeledness
	Proving Relative Security
	Conclusions
	Future Work
	Bibliography
	Speculative Semantics
	IFC type system
	Ideal Semantics (IFC)
	Ideal Semantics (annotated programs)
	Flow-sensitive static analysis
	Well-Labeledness
	iSLH must protect stores

