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1. Introduction
Cryptographic protocols are integral to the security of all sorts of communications, e.g. online payments,
messaging, or even digital rights management for streaming services. Concretely, a protocol is a distributed
program that makes extensive use of cryptographic primitives such as encryption, signatures, and hash
functions. These primitives are typically proven to fulfill certain security guarantees which can thus be
assumed when designing a protocol. Nonetheless, primitives can only provide security if they are used
properly and the protocol does not leak any secrets in any other way, as a flawed protocol can easily nullify
any guarantees expected to be provided by the primitives.
As indicated by many real-world vulnerabilities [19, 24, 1], properly designing protocols is a very difficult

task. Formal analyses of protocols are therefore essential; however, they are also complex and prone to
errors [22, 8]. This has lead to the development of several formal approaches and automated proof
techniques.
There are two main approaches to protocol verification, the symbolic model and the computational

model. In the symbolic model, attacker capabilities are explicitly stated as an equational theory. This
makes it very suitable for automated verification techniques [10, 21], at the risk of under-approximating ad-
versary power. The computational model, on the other hand, models attackers as probabilistic polynomial-
time Turing machines. While this ensures stronger guarantees and is more precise, as it can model any
polynomial-time attacker, it also means that most security properties can only hold with overwhelming
probability: in many cases, there will always be some possibility of failure. For example, an attacker could
randomly guess a secret key, circumventing any encryption. However, the probability of this happening
decreases exponentially with the length of the key, and is thus considered negligible.
Proofs in the computational model are done using reductions, where one shows how an efficient attacker

against the protocol can be used to construct an efficient attacker against one of the primitives used. As
it is assumed that no efficient attacker against the primitive can exist, it follows that there cannot be an
efficient attacker against the protocol. Unfortunately, such proofs are hard to automate1.
Thus, Bana and Comon-Lundh [7] have introduced another approach: the Computationally Complete

Symbolic Attacker (CCSA). Based on first-order logic, and thus closer in proof techniques to a symbolic
approach, it is nonetheless able to provide computational guarantees. It achieves this via the use of
predicates whose semantics are defined with respect to polynomial-time Turing machines (PPTM), most
notably the indistinguishability predicate t1 ∼ t2. This predicate represents a situation where an attacker is
presented with a value and tries to determine whether it was produced by t1 or t2. If no efficient adversary
can do so, then t1 and t2 are considered to be indistinguishable.

1For more details, see e.g. the introduction of Dupressoir, Kohbrok, and Oechsner [15]
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The CCSA approach requires some basic axioms about the predicates used, which in turn must still be
proved using reductions in the computational model. However, with these axioms, one can then perform
complex reasoning entirely within CCSA logic. Using first-order logic makes this approach especially
suitable for implementation in a proof assistant, as demonstrated by Squirrel[5].
Despite still being relatively recent, CCSA has been successfully used to analyze some protocols [18, 13,

6].

1.1. The Research Problem
While CCSA was originally designed for cryptographic protocol analysis, there is nothing fundamentally
preventing it from being applied to cryptographic primitives as well. Indeed, the distinction is not always
clear, as some protocols like oblivious transfers or zero-knowledge proofs are often useful to treat as
primitives in a larger protocol. On the other hand, encryption schemes can be complex enough to warrant
analysis in a proof assistant. Further, it is desirable to analyze both protocols and the primitives they rely
on in the same model and using the same tools in order to ensure that the security properties specified
in the protocol can be met. Otherwise, there is a potential for errors in translating security properties
between models, or even between different tools in the same model. Therefore, the goal of this internship
was to investigate whether studying cryptographic primitives in CCSA is feasible in practice.
To this end, we first investigated KEM/DEM hybrid encryption schemes, in which a symmetric en-

cryption scheme is used to encrypt large messages, but the key is then encrypted asymmetrically. This
approach is very popular, as symmetric encryption is often much more computationally efficient. We
studied how best to represent existing notions of security in CCSA, as well as whether existing results for
the security of hybrid encryption schemes [17] translate to CCSA.
We then turned to oblivious transfers, which are small protocols that allow a receiver to receive exactly

one message out of a set provided by the sender, without the sender learning which message was received.
We investigated how best to represent an abstract oblivious transfer for use in other protocols, as well as
how to state the relevant security properties in CCSA and whether they could be proved for some concrete
implementations.

1.2. Contributions
Our investigation of hybrid encryption schemes produced an extensive set of security definitions in CCSA,
almost all of which are new. In some cases, we provided multiple axioms suitable for different situations,
and showed their equivalence. We found that restating game-based definitions as indistinguishability can
highlight similarities that were previously obscured, thus providing intuition for how they relate to each
other.
Using these security definitions, we were able to reproduce in CCSA the positive results of Herranz,

Hofheinz, and Kiltz [17]. This also lead us to generalize some definitions and proof techniques, allowing
them to be reused in many different situations.
For oblivious transfers, we provided a way to represent them abstractly, and demonstrated its usability

with two examples. One example uses public-key encryption, but the other one builds directly on number-
theoretic assumptions, and thus serves to demonstrate that CCSA can be used down to fundamental
assumptions.

1.3. Metainformation
The work presented here has been performed in the context of a 5-month internship from February 26, 2024
to July 26, 2024 at the LMF (Laboratoire Méthodes Formelles) at CNRS, ENS-Paris-Saclay, supervised
by Guillaume Scerri and his PhD student Théo Vignon.
The first three weeks of the internship were spent familiarizing myself with CCSA logic (I had of course

started with this before; however, I realized that I had many questions which I needed answered first
before I could properly understand the relevant papers) as well as game-based definitions and proofs.
Also, perhaps more importantly, we still needed to decide which exact version of the logic to use (as
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CCSA is still very recent, it is constantly evolving, and there are major differences between the logic in
[5] and [2]).
After that, it was time to come up with cryptographic axioms for KEM/DEM encryption schemes,

which took easily two weeks and many rejected drafts until they were sufficiently expressive, while also
being sound and not overly complicated (although this time also included sketches for the proofs I would
do later, which uncovered many flaws, and the axioms would also still be refinement later on).
In early April, my supervisors invited me to join them for the Annual Meeting of the WG “Formal

Methods in Security”2, which I was very grateful for, as it allowed me to gain a broader view of the
current work in this field.
Also in April, I took a week-long break to be able to attend the ICPC World Finals in Luxor3.
The end of April and early May were spent looking at all the side conditions in the axioms which had not

yet received a formal definition. I found a general construction and ensured that it satisfies the required
properties for the proofs. This was followed by an excursion into the work of Baelde et al. [4] and Baelde,
Koutsos, and Sauvage [3], which did not make it into this report.
The remaining time was spent investigating oblivious transfers. Unfortunately, I did not have enough

time at the end of the internship to use oblivious transfers within a larger protocol, so this report only
demonstrates two different implementations, but not how they can be used in a larger context.
In July, my supervisors invited me to attend CSF 20244, where Théo was presenting his paper on CCSA

logic with concrete bounds [4]. I was clearly the youngest attendee, everyone else being at least a year into
their PhD, but I greatly enjoyed the talks and had many interesting discussions with other attendees.

2. Preliminaries

2.1. Cryptographic Games
Cryptographic security properties are commonly defined in terms of an attack game between an attacker
and a challenger, both of which are probabilistic processes. The notion of security is defined by a particular
event S, the probability of which should be very close to some target value t. This target value is commonly
0, 1

2 , or the probability of an event in a different game [23].
As an example, consider the definition of indistinguishability under chosen ciphertext attack for public

key encryption [17], which we introduce in detail in Section 3.2. The challenger is described by the following
process, where A1 and A2 denote two separate phases of the attacker:

Exppke−ind−atk−b
PKE,A (η)

(pk, k)←$ PKE.Kg(1η)

(St,m0,m1)←$ APKE.Dec(k,·)
1 (pk)

C∗ ←$ PKE.Enc(pk,mb)

b′ ←$ A2(C
∗, St)

return b′

Here, security is defined by the event Exppke−ind−atk−1
PKE,A (η) = 1, while the target value is the probability

that Exppke−ind−atk−0
PKE,A (η) = 1.

For clarity, we use ←$ to denote randomized computation and ← for deterministic computation. ←$
can also be used to draw uniformly at random from a set.
The notation APKE.Dec(k,·)

1 (pk) indicates that the attacker is given pk as an input, and has access to an
oracle that computes PKE.Dec(k, c) for any attacker-chosen ciphertext c. Games often give the attacker

2https://gtmfs2024.sciencesconf.org/
3https://news.icpc.global/wf2023/
4https://csf2024.ieee-security.org/
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access to oracles in order to provide limited access to specific operations that the attacker would otherwise
not be able to perform. In this case, it allows the attacker to decrypt without knowing the secret key, but
only in the first phase.
Computations performed by an oracle do not count towards the attackers runtime, but querying an

oracle and reading its answer do require time. Thus, the attackers runtime puts an upper bound on the
number of oracle queries, for example, a polynomial-time attacker can make at most a polynomial (in η)
number of queries.
Cryptographic primitives, and therefore also games, are parametric in a security parameter η, which

regulates e.g. the lengths of keys and hashes. For any game G and attacker A, the difference it can achieve
between the probability of event Sη in G(η), called its advantage, is thus a function of η:

AdvGA(η) = |Pr[Sη]− t|

For the example above, the advantage is defined as

Advpke−ind−atk
PKE,A (η) =

∣∣∣Pr[Exppke−ind−atk−1
PKE,A (η) = 1]− Pr[Exppke−ind−atk−0

PKE,A = 1]
∣∣∣

Commonly, the security property defined by G is satisfied if AdvGA(η) is negligible for any polynomial-time
attacker A.
For a detailed introduction into games and game-based proofs, see Shoup [23].

2.2. Negligibility
A function f(η) is negligible, written f(η) ∈ negl(η), if it grows asymptotically smaller than the inverse of
any polynomial. This is a useful notion in cryptography since, as long as the cryptographic primitives and
protocols used have runtime polynomial in η, the adversary’s advantage can be decreased exponentially
with only a polynomial increase in runtime.

2.3. CCSA Logic
CCSA logic is a first-order logic on higher-order terms, specifically designed for cryptographic protocols
and their security properties. It is designed around a view of protocol executions as their traces, using a
folding method to translate protocols to inductively defined sets of terms. This suggests that proofs of
primitives at the term level should also be possible, which we explore in this work.
This section aims to give an overview of the parts of the logic necessary to understand our work, but it

will not go into detail on other aspects. For a full description, we refer to Baelde, Koutsos, and Lallemand
[2].

2.3.1. Terms, Types and Environments
CCSA uses simply-typed λ-terms with a set of variables X and a set of base types B. The base types
include bool and unit as well as τmsg, which represents bitstrings of arbitrary length, and is used as the
type of plain- and ciphertexts as well as of keys. In contrast to Baelde, Koutsos, and Lallemand [2], we
allow product types τ1 × τ2 and option types opt τ1 in addition to function types τ1 → τ2.
In addition to the standard constants and operators for each type, we also assume an equality operator

=τ : τ × τ → bool for each type τ . Finally, we introduce let x = t in t′ as syntactic sugar for (λx.t′)t.

Names

Terms can access randomness via the use of names. These are special functions of type τ0 → τ1 that
provide access to randomness: A name assigns to each value of τ0 (often called the index) a value of τ1,
sampled randomly according to some specified probability distribution. Importantly, these samples are

1Option types will mostly be handled implicitly, i.e. we do not explicitly check whether a value is present. Any operation
on ⊥ (which represents the absence of a value) is assumed to yield ⊥.
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independent of each other and of other names. The index type τ0 must be finite, but is allowed to grow
with η.
Terms are evaluated in environments E , which consist of definitions of the form x : τ = t and declarations

x : τ . Definitions must be well-typed in the sense that for each Definition x : τ = t, t must itself be well-
typed in E . This allows for recursive and mutually recursive definitions.

Interpretation

A model of an environment E is a term structure M : E , which
• associates to each base type τb, for all η, a non-empty interpretation domain Mτb(η) and an injective

mapping to bitstrings. For example, the type bool always has the interpretation domain {0, 1},
with maps to bitstrings in the obvious way: 0 7→ 0 and 1 7→ 1. One could also introduce a type of
integers, where the interpretation domain would be N, and each number would be mapped to its
binary representation. Other types can be restricted to fixed (for all η) or finite (but allowed to vary
with η) interpretation domains using labels.

• provides, for each η, a finite set TM,η of random tapes (bitstrings) of equal length. Individual tapes ρ
are divided into two parts ρh and ρa, where ρh is used for the evaluation of terms, and ρa is available
to be used by the attacker.

• provides a partial mapping σM that associates to each variable in E , for each η and random tape ρ
in TM,η, an element of the appropriate interpretation domain. In particular, for a name n : τ0 → τ1,
σM(E)(η) maps random tapes ρ to functions f such that for all indices i and j, f(i) and f(j) are
independent, and f(i) has the desired probability distribution over ρ. Note that the index type τ0
must be finite so that f(i) and f(j) can be independent for all i and j.

The semantics of types JτKηM and of terms JtKη,ρM:E are defined recursively, with the semantics of base
types given by JτbKηM := Mτb(η), and the semantics of function, product and option types defined as
usual. The semantics of variables is JxKη,ρM:E := σM(x)(η)(ρ) with ρ ∈ TM,η. Finally, models must satisfyJxiKη,ρM:E = Jλx.tKη,ρM:E for all η, ρ and xi = λx.t ∈ E .

2.3.2. Proof System
Formulas in CCSA consist of conjunction, disjunction, implication and negation (∧̃, ∨̃, =̃⇒ , ¬̃), quantifi-
cation over variables (∀̃(x : τ).F, ∃̃(x : τ).F ) and, most importantly, predicates p(t1, · · · , tn) on terms.
The semantics JF KM:E is defined in a standard way; some important predicates and their semantics will
be given below.
CCSA logic features judgements E ; Θ ` F , where E is an environment and Θ a set of formulas (the

hypotheses)2. Such a judgement is valid if all models of E satisfy ∧̃Θ =̃⇒ F .

Probabilistic Predicates

The most important feature of CCSA logic are its standard predicates, which enable cryptographic rea-
soning. We present here indistinguishability, overwhelming truth, and constancy.
Indistinguishability of two terms t1 and t2, written t1 ∼ t2, states that for any probabilistic polynomial-

time Turing machine A, the advantage at distinguishing t1 and t2 is negligible:Jt1 ∼ t2KM:E := ∀A ∈ PPTM,AdvηM:E(A : t1 ∼ t2) ∈ negl(η)

AdvηM:E(A : t1 ∼ t2) := |Prρ∈TM,η
[A1η, Jt1Kη,ρM:E , ρa]− Prρ∈TM,η

[A(1η, Jt2Kη,ρM:E , ρa)]|

Since indistinguishability is defined up to negligible probability, it is transitive up to a polynomial
number of steps. CCSA thus has axioms for transitivity and symmetry (see Appendix A.1), as well
as one for the concept of freshness, which states that different random samplings using the same
probability distribution are indistinguishable (see Appendix A.2).

2Baelde, Koutsos, and Lallemand [2] call these “global judgements” and also feature “local judgements”, which reason
about overwhelming truth of boolean formulas. However, we omit those here – while we do use overwhelming truth, local
judgements are not necessary to understand our work.
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Overwhelming truth [ϕ] of an expression ϕ (of type bool) states that ϕ is only false with negligible
probability: J[ϕ]KM:E := Prρ∈TM,η

[¬JϕKη,ρM:E ] ∈ negl(η)

This can be used to rewrite terms that are equal with overwhelming probability ([t1 = t2]), including
β-equivalent terms (see Appendix A.3).

Constancy of a term t, written const(t), specifies that the value of t is fixed. It is thus neither random,
nor can it vary with η. This is often used for indices.

Jconst(t)KM:E := ∃c ∈ (
⋂
η∈N

JτKηM), ∀η ∈ N, ∀ρ ∈ TM,η, JtKη,ρM:E = c

Probabilistic Polynomial-Time Computability

Since this work is concerned with polynomial-time attackers, we commonly require that terms must be
computable in polynomial time. This is specified using judgements E ,Θ; ∅ `pptm (t) with their own
derivation rules (see Baelde, Koutsos, and Lallemand [2]). Note, however, that this is not a complete
characterization of polynomial-time computability; in fact, it requires computation to follow the same
recursive structure as the semantics, as this is necessary for the soundness proofs of cryptographic axioms.

3. KEM/DEM Hybrid Encryption
Encryption schemes can fundamentally be split into two categories: symmetric encryption, where the same
key is used for encryption and decryption, and asymmetric encryption, where the two operations require
different keys. Symmetric encryption schemes are often very computationally efficient, but they require
that a shared secret must be established between the parties involved in the communication. Asymmetric
schemes, on the other hand, allow that the encryption key can be made public, and are thus also called
public-key encryption schemes (PKE). However, these schemes have much higher computational costs.
The KEM/DEM paradigm, first formalized by Cramer and Shoup [14], is a method to construct efficient

public key encryption schemes by combining symmetric and asymmetric schemes. In this paradigm, a key
encapsulation mechanism (KEM) generates and asymmetrically encrypts a single-use symmetric key, which
is then used to encrypt the message using a data encapsulation mechanism (DEM).
An important question with such a modular approach is how the security of the resulting hybrid scheme

relates to the security of the individual components. This has been studied extensively by Herranz,
Hofheinz, and Kiltz [17], whose results we reproduce in CCSA logic here.

3.1. Formal Definition
We first restate the definitions from Herranz, Hofheinz, and Kiltz [17] before making adjustments for
CCSA. For this chapter, only definitions in CCSA constitute our work.

3.1.1. Definitions by Herranz, Hofheinz, and Kiltz [17]
A public-key encryption scheme consists of three functions PKE.Kg,PKE.Enc and PKE.Dec. Key gener-
ation is performed by (pk, sk) ←$ PKE.Kg(1η) for security parameter η, c ←$ PKE.Enc(pk,m) denotes
randomized encryption with the public key pk and {m,⊥} ← PKE.Dec(sk, c) denotes decryption with the
secret key sk (returning ⊥ if decryption fails).
Similarly, a key encapsulation mechanism consists of three functions KEM.Kg,KEM.Enc and KEM.Dec

and a data encapsulation mechanism consists of DEM.Kg,DEM.Enc and DEM.Dec. However, here, (k, c)←$
KEM.Enc(pk) denotes the simultaneous generation and encryption of a symmetric key k. Since DEMs are
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symmetric, k ←$ DEM.Kg(1η) generates only a single symmetric key, which is then used for both encryption
and decryption.
A DEM and a KEM are compatible if, for all η, the key space produced by KEM.Enc(pk) (with a key

pk obtained from KEM.Kg(1η)) and that produced by DEM.Kg(1η) are equal. In this case, they can be
combined into a PKE as follows:

PKE.Kg(1η)

(pk, k)←$ KEM.Kg(1η)

return (pk, k)

PKE.Enc(pk,m)

(sk, c1)←$ KEM.Enc(pk)

c2 ←$ DEM.Enc(k,m)

return (c1, c2)

PKE.Dec(sk, (c1, c2))

sk ← KEM.Dec(k, c1)

m← DEM.Dec(sk, c2)

return m

3.1.2. Definitions in CCSA
To be able to use these definitions in CCSA, we need to make the following adjustments:

• Terms in CCSA cannot be probabilistic except via names. For randomized encryption, we therefore
need to provide explicit access to random samplings via a suitable name, which we will commonly
denote r. The return type of this name is τmsg, which allows for bitstrings of arbitrary length, and
the necessary length can be specified via the name’s probability distribution. Note, however, that
this means that our cryptographic axioms only apply if a name of the same probability distribution is
used to supply randomness, and that we need to ensure different samplings are used when encrypting
different messages.

• The use of a probabilistic function for key generation would be needlessly complicated in CCSA.
Instead, we use a name k that is equally distributed over the key space for the secret key, and allow
the public key to be derived from the secret key via a function pk.

Note that we generally type everything, including keys and randomness, as τmsg. This may seem
imprecise at first, but it is necessary if we want to be able to encrypt and decrypt keys (as is necessary in
the KEM/DEM construction) and use the result in further operations.
For clarity, however, we may sometimes add superscripts to τmsg to indicate the role a specific message

plays when specifying function types.
We therefore obtain the following signatures for KEM and DEM schemes in CCSA:

KEM.Enc : τpubkey
msg × τ rand

msg → τ symkey
msg × τ enc

msg

KEM.Dec : τprivkey
msg × τ enc

msg → opt τ symkey
msg

DEM.Enc : τ symkey
msg × τmsg × τ rand

msg → τmsg

DEM.Dec : τ symkey
msg × τmsg → opt τmsg

These can be combined into a PKE as follows:

PKE.Enc(pk(k i),m, (r1 j, r2 j))

let (sk, c1) = KEM.Enc(pk(k i), r1 j)

in (c1,DEM.Enc(sk,m, r2 j))

PKE.Dec(k i, (c1, c2))

let sk = KEM.Dec(k i, c1)

in DEM.Dec(sk, c2)

Of course, an important property of any encryption scheme is that it is correct, i.e. that encrypting and
decrypting a message yields the same message. In CCSA, we can state this the following way (here for
the example of KEM):

KEM-correct

E ; Θ ` ∀̃(tk, tr). [KEM.Dec(k tk, π2(KEM.Enc(pk(k tk), r tr))) = π1(KEM.Enc(pk(k tk), r tr))]

3.2. Security Definitions
We will consider two notions of security: indistinguishability, which requires that an attacker cannot
distinguish between two encrypted messages, and nonmalleability, which enforces that an attacker cannot
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modify the ciphertext in any meaningful way. Both notions apply to PKE, KEM and DEM schemes in
slightly different ways.
These notions are further refined according to the adversary’s capabilities. A CPA attacker (chosen

plaintext attack) will have the ability to encrypt arbitrary plaintexts. A CCA1 attacker ([non-adaptive]
chosen ciphertext attack) is further able decrypt chosen ciphertexts so long as they do not depend on
the challenge ciphertext, and a CCA2 attacker (adaptive chosen ciphertext attak) does not have this last
restriction and can decrypt any ciphertexts that are not the challenge ciphertext.

3.2.1. Indistinguishability
The common cryptographic definition of indistinguishability for PKEs uses the following game [17]:

Exppke−ind−atk−b
PKE,A (η)

(pk, k)←$ PKE.Kg(1η)

(St,m0,m1)←$ ADEC1(·)
1 (pk)

C∗ ←$ PKE.Enc(pk,mb)

b′ ←$ ADEC2(·)
2 (C∗, St)

return b′

C∗ is called the challenge ciphertext. The oracles DEC1 and DEC2 are instantiated differently depending on
the type of attacker: For CPA, both oracles do nothing, as the attacker may never decrypt any ciphertexts.
For CCA1, however, DEC1 is instantiated with PKE.Dec(k, ·) while DEC2 does nothing, and for CCA2, DEC2
is further instantiated with a modified PKE.Dec(k, ·) that fails when attempting to decrypt C∗.
The advantage of an adversary A is

Advpke−ind−atk
PKE,A (η) =

∣∣∣Pr[Exppke−ind−atk−1
PKE,A (η) = 1]− Pr[Exppke−ind−atk−0

PKE,A = 1]
∣∣∣

Intuitively, the attacker gets to choose two messages m0 and m1 and wins this game if it can correctly
guess which one was encrypted. If no attacker can do so with more than a negligible advantage, the PKE
is secure.
The definitions for KEMs and DEMs are very similar, but with slightly different games[17]:

Expkem−ind−atk−b
KEM,A (η)

(pk, k)←$ KEM.Kg(1η)

St←$ ADEC1(·)
1 (pk)

K∗
0 ←$ KeySp(η)

(K∗
1 , C

∗)←$ KEM.Enc(pk)

b′ ←$ ADEC2(·)
2 (C∗, St,K∗

b )

return b′

Expdem−ind−atk−b
DEM,A (η)

K ←$ DEM.Kg(1η)

(St,m0,m1)←$ AENC1(·),DEC1(·)
1 (1η)

C∗ ←$ DEM.Enc(pk,mb)

b′ ←$ AENC2(·),DEC2(·)
2 (C∗, St)

return b′

For key encapsulation mechanisms, the main difference is that they do not encrypt any messages. Thus,
instead of letting the attacker choose, one key is generated by the KEM and another key is randomly
sampled from the key space. Then, the attacker is given one of those keys together with the ciphertext
and needs to determine whether they match.
For data encapsulation mechanisms, the difference is that the adversary now needs access to an encryp-

tion oracle. This is not necessary for KEM and PKE, since the attacker can perform encryption itself
using the public key. For CPA, CCA1 and CCA2 attackers, this oracle is just DEM.Enc(K, ·), however,
there are actually two more notions which apply specifically for single-use keys: OT (one-time) attackers
do not have access to any encryption or decryption oracles and OTCCA (one-time chosen ciphertext) are
not able to encrypt, but can attempt to decrypt modified ciphertexts.
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CCSA Axioms for PKE Indistinguishability

Since the game-based definitions of indistinguishability essentially gives two situations which no adversary
can distinguish with more than a negligible advantage, we can easily state a corresponding axiom in CCSA
if we can accurately describe the two experiments in the logic.
A first change we will make is that, instead of letting the adversary choose two messages, we only use one

message m and the message 0|m|, which has the same length, but consists only of zeroes. This will simplify
the presentation of the axiom, and we can easily obtain a version with two messages using transitivity.
Another change is that in the CCSA version, it does not make sense to let the attacker choose the

message. In the computational model, this is done so that the attacker can choose the messages that
give it the greatest advantage. If that advantage is still negligible, however, it must be negligible for all
messages, so our axiom will be most flexible if it allows any message to be used.
To translate the experiment into CCSA terms, note that A2 essentially computes a function whose

arguments are the ciphertext and the internal state after A1. This leads to the following representation:

(λ v⃗ c.C) a⃗ PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

where C represents A2, and a⃗ captures any terms that may have been computed by A1
1. Note that C

does not need to be of type bool: if an attacker can produce any intermediate results which later allow
it to distinguish between the two experiments, this is sufficient, and the indistinguishability predicate will
handle the rest. This will make the axiom more flexible.
Thus, the conclusion of our axiom will be

(λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

∼ (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))

However, we can only guarantee this under the following restrictions:

• C, a⃗ and m must be polynomial-time computable

• the indices tk and tr must be polynomial-time computable and not random

• the random samplings r1 tr, r2 tr must not occur anywhere in m, a⃗ or C

• the secret key k tk must not occur in m, a⃗ or C except as pk(k tk)

The first two restrictions can be enforced by requiring E ,Θ; ∅ `pptm C, a⃗, tr,m, E ,Θ ` const(tr)

and E ,Θ ` const(tk). For the remaining conditions, we will use formulas ϕguarded k,tk
pk(k tk)

(C, a⃗,m) and
ϕr1,trfresh(C, a⃗,m), ϕr2,trfresh(C, a⃗,m), which we will introduce in Appendix C.1.
Thus, the final axiom looks as follows:

PKE-IND-CPA
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr)

E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C, a⃗,m)] E ,Θ ` [ϕr2,trfresh(C, a⃗,m)] E ,Θ ` [ϕguarded k,tk
pk(k tk)

(C, a⃗,m)]

E ,Θ ` (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

∼ (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))

Note that in this axiom, the same random sampling (r1 tr, r2 tr) is used both in the encryption of m
and in the encryption of 0|m|. This may not be desirable in some use cases, however, the random sampling
can easily be changed in another transitive step since r1 tr and r2 tr are fresh.
To obtain a similar axiom for IND-CCA1, we need to allow the attacker to perform decryption operations

with the key k tk when computing a⃗. We could do this by explicitly providing the attacker with a decryption
function, however, it will be easier and more flexible to say that k tk may be used in a⃗ as long as it is

1For IND-CPA, this distinction is actually not necessary, since A1 does not have any more capabilities than A2. However,
this is not the case for CCA1 and CCA2.
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guarded by PKE.Dec(k tk, ·):2

PKE-IND-CCA1
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C, a⃗,m)]

E ,Θ ` [ϕr2,trfresh(C, a⃗,m)] E ,Θ ` [ϕguarded k,tk
pk(k tk)

(C)] E ,Θ ` [ϕguarded k,tk
pk(k tk),PKE.Dec(k tk,·)(⃗a,m)]

E ,Θ ` (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

∼ (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))

Note that here, as well as in all following axioms, we assume that a⃗ contains only terms of order 0. Thus,
it may not contain a term such as (λ x.PKE.Dec(k tk, x)), which would allow decryption in C.
For CCA2, we can allow decryption in C in a similar way, however, we must ensure that this is not

used to decrypt the challenge ciphertext. Therefore, we use the following guarding term: if t = c then ⊥
else PKE.Dec(k tk, t) (where c is the variable to which the ciphertext is bound in C). This yields the
following axiom:

PKE-IND-CCA2
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C, a⃗,m)] E ,Θ ` [ϕr2,trfresh(C, a⃗,m)]

E ,Θ ` [ϕguarded k,tk
pk(k tk),PKE.Dec(k tk,·)(⃗a,m)] E ,Θ ` [ϕguarded k,tk

pk(k tk),if t=c then ⊥ else PKE.Dec(k tk,t)
(C)]

E ,Θ ` (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

∼ (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))

This version of the axiom is likely preferred in practice, however, it will not be suitable when we reproduce
the results of Herranz, Hofheinz, and Kiltz [17] in Section 3.3, as we will need to rewrite in the guarding
expression. Therefore, we also give an alternative version, where guarded decryption is explicitly provided
as a function. These two versions of the axiom are in fact equivalent, as we will see in Appendix D.

PKE-IND-CCA2’
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C, a⃗,m)]

E ,Θ ` [ϕr2,trfresh(C, a⃗,m)] E ,Θ ` [ϕguarded k,tk
pk(k tk)

(C)] E ,Θ ` [ϕguarded k,tk
pk(k tk),PKE.Dec(k tk,·)(⃗a,m)]

E ,Θ `

(λ v⃗ c dec.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

(λx.if x =
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

then ⊥ else PKE.Dec(k tk, x))

∼

(λ v⃗ cdec.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))
(λx.if x =

PKE.Enc(pk(k tk), 0
|m|, (r1 tr, r2 tr))

then ⊥ else PKE.Dec(k tk, x))

CCSA Axioms for KEM Indistinguishability

The axioms for key encapsulations mechanisms follow largely the same design choices as those for PKE. We
will therefore only present the case for CCA1 here; the full set of axioms can be found in Appendix B.1.1.

KEM-IND-CCA1
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C, a⃗)]

E ,Θ ` [ϕ
sk∗,()
fresh (C, a⃗)] E ,Θ ` [ϕguarded k,tk

pk(k tk)
(C)] E ,Θ ` [ϕguarded k,tk

pk(k tk),KEM.Dec(k tk,·)(⃗a)]

E ,Θ ` (λ v⃗ (sk, c).C) a⃗ KEM.Enc(pk(k tk), r tr) ∼
(λ v⃗ (sk, c).C) a⃗

(sk∗(), π2 KEM.Enc(pk(k tk), r tr))

A clear difference compared to PKE is that KEM.Enc does not encrypt a message. Instead, it produces
a key-ciphertext pair, which is given to the attacker (i.e. passed to C) on the left-hand side. On the
right-hand side, the generated key is discarded instead, and we sample a fresh key3 using the name sk∗
(which is assumed to have the same probability distribution and index type unit). Since this key must
be independent of anything else, we require that sk∗ () does not occur anywhere else, which we enforce
with ϕsk

∗,()
fresh (C, a⃗).

2The IND-CCA1 axiom is the only axiom presented here that’s also commonly found in literature, however, it is often
weaker as it does not allow for any operations on the ciphertext (as we do with C). The only version we’ve found that
also achieves this is by Baelde et al. [4]

3Note that it would not be possible here to choose a constant key (similar to the message 0|m| for PKE), since indistin-
guishability is defined slightly differently: here, the key changes while the ciphertext remains the same, whereas for PKE,
the message remains fixed and the ciphertext changes.
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CCSA Axioms for DEM Indistinguishability

Data encapsulation mechanisms also only require a few modifications compared to the PKE axioms. Most
importantly, since a symmetric key is used, there is no pk function. Where previously, the key k tk was
allowed to appear if guarded by pk, we now need to use KEM.Enc(k tk, ·, ·) as the guarding expression
instead (except for OT and OTCCA, where the attacker is not allowed to encrypt). However, we also need
to be careful with the randomness used for these encryptions. In the computational model, these would
be performed by a randomized oracle, which does not allow the attacker to influence its random sampling.
Therefore, for a sound axiom, we need to ensure that the attacker is not allowed to perform encryption
in a way that would not be possible using the oracle. In particular, this means that the attacker must
not be allowed to encrypt different messages with the same randomness, which we enforce using a suitable
formula ϕk,tkdem−rand introduced in Appendix C.2.
This yields the following axiom for IND-CCA1; the others can be found in Appendix B.2.1.

DEM-IND-CCA1
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C, a⃗,m)] E ,Θ ` [ϕk,tkdem−rand(C, a⃗,m)]

E ,Θ ` [ϕguarded k,tk
DEM.Enc(k tk,·,·)(C)] E ,Θ ` [ϕguarded k,tk

DEM.Enc(k tk,·,·),DEM.Dec(k tk,·)(⃗a,m)]

E ,Θ ` (λ v⃗ c.C) a⃗ DEM.Enc(k tk,m, r tr) ∼ (λ v⃗ c.C) a⃗ DEM.Enc(k tk, 0
|m|, r tr)

3.2.2. Nonmalleability
Another important security property we investigated is nonmalleability. Stronger than indistinguishability,
it roughly states that the attacker can not modify the ciphertext in any meaningful way (where a modifi-
cation is considered meaningful if its decryption is related to the original plaintext in some attacker-known
way).
For PKEs, nonmalleability is defined using the following game [17]:

Exppke−nm−atk−b
PKE,A (η)

(pk, k)←$ PKE.Kg(1η)

(St,M)←$ ADEC1(·)
1 (pk)

m0,m1 ←$M
C∗ ←$ PKE.Enc(pk,m1)

R,C←$ ADEC2(·)
2 (C∗, St)

M← PKE.Dec(k,C)

return C∗ /∈ C ∧R(mb,M)

Like with indistinguishability, we obtain different versions for CPA, CCA1 and CCA2 depending on the
instantiation of the decryption oracles. The advantage of an attacker A is

Advpke−nm−atk
PKE,A (η) =

∣∣∣Pr[Exppke−nm−atk−1
PKE,A (η) = 1]− Pr[Exppke−nm−atk−0

PKE,A = 1]
∣∣∣

and we consider a PKE to be secure if this advantage is negligible.
We omit here the definitions for KEM and DEM and refer to Herranz, Hofheinz, and Kiltz [17] and

Nagao, Manabe, and Okamoto [20]. Corresponding axioms can be found in Appendix B.
To translate this definition into CCSA, we first realize that we can use an equivalent game where the

message passed to R is fixed, but the message that is encrypted is randomized. This allows us to once
again only use one message m, but vary between its encryption and the encryption of 0|m|. Another
important realization is that ADEC

2 and R actually have the same capabilities: Even in the CCA2 case,
the attacker could precompute any oracle queries it would like to perform in R in ADEC

2 and hardcode the
results (including queries that depend on R’s first argument, since there are only two options)4. We will
thus treat R as a third phase of the attacker, which has the same capabilities of the second. As a final

4This is not the case for KEM nonmalleability, see Appendix B.1.2
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change, we will refuse to decrypt the challenge ciphertext, instead of checking whether such a query has
been made afterwards. This yields the following CCA1 axiom (see Appendix B.3.2 for the others):

PKE-NM-CCA1
E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C,C
′, a⃗, a⃗′,m)]

E ,Θ ` [ϕr2,trfresh(C,C
′, a⃗, a⃗′,m)] E ,Θ ` [ϕguarded k,tk

pk(k tk)
(C,C ′)] E ,Θ ` [ϕguarded k,tk

pk(k tk),PKE.Dec(k tk,·)(⃗a, a⃗
′,m)]

E ,Θ `

let c = PKE.Enc(k tk,m, (r1 tr, r2 tr))
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else PKE.Dec(k tk, x))

∼
let c = PKE.Enc(k tk, 0

|m|, (r1 tr, r2 tr))
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else PKE.Dec(k tk, x))

This axiom is surprisingly close to the PKE-IND-CCA1 axiom, with an additional term for the decryption.
Like the CCA2 oracle, this additional term allows decryption queries depending on the challenge ciphertext,
unlike the CCA2 axiom however, these decryptions can not be nested (the attacker can not make a
decryption query based on the result of a previous query)5.
We find that this perspective helps to build intuition for some results that are somewhat obscured by the

game-based definitions. For one, NM-CCA1 and NM-CPA imply IND-CCA1 and IND-CPA respectively,
since NM simply gives the attacker access to an additional term. Further, IND-CCA2 and NM-CCA2 are
equivalent, since the CCA2 decryption oracle is strictly more powerful than the additional term for non-
malleability. Finally, there is no implication between NM-CPA and IND-CCA1, as the CCA1 decryption
oracle allows nested queries, but cannot be used for queries depending on the challenge ciphertext. Thus,
neither can be used to fully simulate the other.

3.2.3. Soundness of Axioms
Of course, the axioms we presented here need to be proven sound with respect to the computational
definitions. We present how to do this for KEM-IND-CCA2 and KEM-sNM-CCA1 in Appendix F. In
general, the proofs proceed by assuming an attacker A against the indistinguishability in the axiom,
and using it to construct an attacker against the cryptographic game. This requires specifying a Turing
machine that computes the terms in the axioms while querying available oracles for any computations it
cannot perform directly, like encryption and decryption. The side conditions of the axioms enforce that
all terms that would require knowledge not available to the attacker can be handled by oracles.
Since the computational definitions specify that such attackers must have a negligible advantage, it then

follows that the advantage of A against the indistinguishability must be negligible.

3.3. KEM/DEM Security Results in CCSA
With all definitions in place, we can now reproduce the positive results of Herranz, Hofheinz, and Kiltz
[17]. We will show here a quick overview of the proof of IND-CCA2 security of a KEM/DEM hybrid
encryption scheme composed of an IND-CCA2 secure KEM and an IND-OTCCA secure DEM, the full
proof can be found in Appendix E.1. The security of other combinations can be proved similarly using
the same techniques.
This proof uses the versions of the axioms where the oracle is explicitly given as a term, as this enables

us to rewrite inside this term. Substituting the definitions of PKE.Enc and PKE.Dec in PKE-IND-CCA2’,

5While it may seem that this distinction would not be very useful, it is possible to construct encryption schemes that are
only secure as long as no nested queries are allowed. Such a scheme is NM-CCA1 secure, but not IND-CCA2.
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we have the following proof goal:

E ,Θ `

(λ v⃗ c dec.C) a⃗
let (sk, c1) = KEM.Enc(pk(k tk), r1 tr)
in (c1,DEM.Enc(sk,m, r2 tr)) (λx.if x =
let (sk, c1) = KEM.Enc(pk(k tk), r1 tr)
in (c1,DEM.Enc(sk,m, r2 tr)) then ⊥
else let sk = KEM.Dec(k tk, π1(x))

in DEM.Dec(sk, π2(x)))

∼

(λ v⃗ cdec.C) a⃗
let (sk, c1) = KEM.Enc(pk(k tk), r1 tr)

in (c1,DEM.Enc(sk, 0|m|, r2 tr))
(λx.if x = let (sk, c1) =

KEM.Enc(pk(k tk), r1 tr)
in (c1,DEM.Enc(sk, 0|m|, r2 tr)) then ⊥

else let sk = KEM.Dec(k tk, π1(x))
in DEM.Dec(sk, π2(x)))

As a basic proof idea, the indistinguishability of the two ciphertexts should follow from DEM-IND-
OTCCA. However, we cannot apply this directly, as we are currently not using a fresh random key, but
one obtained from the KEM – if the KEM is insecure and the attacker can gain information about the
key, DEM-IND-OTCCA does not apply. Thus, we first need to apply KEM-IND-CCA2’ to exchange the
key with a fresh random one. However, before we can do so, we first need to ensure that KEM decryption
is properly guarded.
This requires some care, as the PKE-IND-CCA2’ oracle permits queries for ciphertexts where the key

part is the same as in the challenge ciphertext, and only the message part is changed. Before we can apply
KEM-IND-CCA2’, we need to handle such cases without querying the KEM decryption oracle. We thus
rewrite using β-equivalence and KEM correctness until we obtain the following:

E ,Θ `

(λ v⃗ c dec.C) a⃗
let (sk, c1) = KEM.Enc(pk(k tk), r1 tr)

in (c1,DEM.Enc(sk,m, r2 tr))
(λx.let (sk, c1) =

KEM.Enc(pk(k tk), r1 tr)
in if x = (c1,DEM.Enc(sk,m, r2 tr))

then ⊥ else if π1(x) = c1
then DEM.Dec(sk, π2(x))

else let sk′ = if π1(x) = c1 then ⊥
else KEM.Dec(k tk, π1(x))
in DEM.Dec(sk′, π2(x)))

∼

(λ v⃗ cdec.C) a⃗
let (sk, c1) = KEM.Enc(pk(k tk), r1 tr)

in (c1,DEM.Enc(sk, 0|m|, r2 tr))
(λx.let (sk, c1) =

KEM.Enc(pk(k tk), r1 tr)
in if x = (c1,DEM.Enc(sk, 0|m|, r2 tr))

then ⊥ else if π1(x) = c1
then DEM.Dec(sk, π2(x))

else let sk′ = if π1(x) = c1 then ⊥
else KEM.Dec(k tk, π1(x))
in DEM.Dec(sk′, π2(x)))

At this point, we can apply transitivity and KEM-IND-CCA2 to exchange the key produced by KEM.Enc
with a fresh key sk∗ (), which will enable us to apply DEM-IND-OTCCA as long as we can properly guard
DEM.Dec(sk∗ (), π2(x)) (note that the other occurrence of DEM.Dec does not need to be guarded, as it
uses a key that is not derived from sk∗ ()). Luckily, such a guard can be put in place using β-equivalence,
as the existing branches already ensure π2(x) 6= DEM.Enc(sk∗ (),m, r2 tr). Thus, the proof concludes
using DEM-IND-OTCCA.
However, we have omitted the side conditions here. The most interesting case is that to apply KEM-IND-

CCA2’, ϕguarded k,tk
pk(k tk),PKE.Dec(k tk),·)(C)must imply ϕguarded k,tk

pk(k tk),KEM.Dec(k tk),·), which we show in Appendix C.1.1.

4. Oblivious Transfers
Oblivious transfers (OT) are an important building block for secure multiparty computation. Their most
direct application are secret database queries, where a client can request exactly one entry from a database
without the server learning which entry was queried. However, they can also be used in many other ways,
including the secure evaluation of boolean and arithmetic circuits [11].
Many variations of oblivious transfer protocols have been presented over the years (see Yadav et al. [25]

for an extensive overview), not only for different security requirements, but also improving on computa-
tional efficiency. It thus makes sense to treat oblivious transfers as a primitive when designing a protocol,
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specifying only the desired security properties. For CCSA, this means that we will need an abstract repre-
sentation of oblivious transfers that can describe a reasonable variety of implementations. In this chapter,
we present such an abstract representation and the corresponding security properties, and present two
implementations of OT protocols that satisfy these properties.

4.1. Definition
A 1-out-of-2 oblivious transfer (1-2 oblivious transfer for short) is a protocol between two parties S (the
sender) and R (the receiver), such that:

• S has two messages m0 and m1

• R has a secret bit b

• R learns messages mb, while not gaining any knowledge about m1−b

• S does not learn the secret bit b

4.2. Abstract Representation in CCSA
To represent a reasonable number of oblivious transfer protocols, we choose to represent them with the
following types and functions:

τinternal−sender represents the internal state of the sender after initialization.

τinternal−receiver represents the internal state of the receiver after making a request.

τmessage−init represents the type of the initialization message from the sender to the receiver.

τmessage−req represents the type of the request message from the receiver to the sender.

τmessage−transfer represents the type of the transfer message from the sender to the receiver.

S.init : τindex → τmessage−init × τinternal−sender represents the first phase of the sender, which is given an
index for its random samplings and generates the initialization message to send to the receiver as
well as the internal state for the second phase.

R.req : τindex × bool× τmessage−init → τmessage−req × τinternal−receiver represents the first phase of the
receiver, which receives the sender’s initialization message, the receiver’s secret bit, and an index for
its random samplings and produces the request message to send to the sender as well as the internal
state for the second phase.

S.transfer : τmessage−req × τinternal−sender × τmsg × τmsg → τmessage−transfer represents the sender’s sec-
ond phase, which is given the request message from the receiver, its own internal state, and two
possible messages to send, and produces a message for the receiver.

R.recv : τmessage−transfer × τinternal−receiver → τmsg represents the receiver’s second phase, which re-
ceives the transfer message and the receiver’s internal state, and produces an output message.

Note that both parties’ initial functions are given an index. We chose this representation because
protocols can vary drastically in how they use randomness. With this design, each protocol can specify
any number of required names, while the index still serves to make everything deterministic. In the
following, we will assume that the names specified in a protocol are never used outside.

4.3. Security Properties
We consider privacy properties, which require that one party’s secret inputs remain secret for the other
parties during the protocol, for honest-but-curious attackers. Such attackers take the role of one party in
the protocol and may attempt to recover another party’s secret, however, they are required to adhere to
the protocol.
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4.3.1. Receiver Privacy for Honest-but-Curious Attackers
Receiver privacy states that an honest-but-curious sender can not learn the receiver’s secret bit (and thus
not learn which of the two messages was received). Concretely, this means that a sender can not distinguish
between the request messages sent when the secret bit is 0 or 1.

OT-R-priv
E ,Θ ` [ϕR.req,j

fresh (u⃗)]

E ,Θ ` u⃗, S.init(i), π1(R.req(j, 0, π1(S.init(i)))) ∼ u⃗, S.init(i), π1(R.req(j, 1, π1(S.init(i))))

Note that receiver privacy assumes that the receiver uses fresh random samplings, so we write ϕR.req,j
fresh (u⃗)

to denote that index j has not been used before1.

4.3.2. Sender Privacy for Honest-but-Curious Attackers
Sender privacy states that an honest-but-curious receiver can not learn anything about the other message,
i.e. the one it chose not to receive. Concretely, this means that if the receiver chose to receive message 0,
it can not distinguish between transfer messages where message 0 is fixed, but message 1 varies. Similarly,
if it chose to receive message 1, it can not distinguish between transfers where message 0 varies.

OT-S-priv-0
E ,Θ ` [ϕS.init,ifresh (u⃗, x0, x1)]

E ,Θ `

u⃗, π1(S.init(i)), R.req(j, 0, π1(S.init(i))),
S.transfer

(π1(R.req(j, 0, π1(S.init(i)))),
π2(S.init(j)), x0, x1)

∼

u⃗, π1(S.init(i)), R.req(j, 0, π1(S.init(i))),
S.transfer

(π1(R.req(j, 0, π1(S.init(i)))),
π2(S.init(j)), x0, x

′
1)

OT-S-priv-1
E ,Θ ` [ϕS.init,ifresh (u⃗, x0, x1)]

E ,Θ `

u⃗, π1(S.init(i)), R.req(j, 1, π1(S.init(i))),
S.transfer

(π1(R.req(j, 1, π1(S.init(i)))),
π2(S.init(j)), x0, x1)

∼

u⃗, π1(S.init(i)), R.req(j, 1, π1(S.init(i))),
S.transfer

(π1(R.req(j, 1, π1(S.init(i)))),
π2(S.init(j)), x

′
0, x1)

4.4. PKE-based Oblivious Transfer [16]
Even, Goldreich, and Lempel [16] present an algorithm for oblivious transfers that builds upon a full-
domain PKE scheme. Here, we will assume a fixed-length scheme, i.e. all plaintexts have the same length
and all ciphertexts have the same length.
We can represent this scheme with the following definitions, using the names kS , ma, mb, s and r:

τinternal−sender := τmsg × τmsg × τmsg

τinternal−receiver := bool× τmsg

τmessage−init := τmsg × τmsg × τmsg

τmessage−req := τmsg

τmessage−transfer := τmsg × τmsg

S.init(i) := ((ma i,mb i, pk(kS i)), (ma i,mb i))

R.req(i, b, (m0,m1, pk)) := (PKE.Enc(pk, si, ri)⊕mb, (b, si))

S.transfer(q, (m0,m1), x0, x1) := (x0 ⊕ PKE.Dec(kS i, q ⊕m0), x1 ⊕ PKE.Dec(kS i, q ⊕m1))

R.recv((c0, c1), (b, r)) := cb ⊕ r
1We justify this slight abuse of notation by the fact that the construction of a suitable formula is entirely analogous to that

of ϕn,tn
fresh.
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4.4.1. Full-Domain Encryption
The PKE scheme used in this protocol has to be NM-CPA secure and full-domain, which means that
every bitstring needs to be a valid ciphertext. Otherwise, the sender could receive a request with an
invalid ciphertext, trivially allowing it to determine the receiver’s chosen bit. In fact, we further need
that even with knowledge of the key, it is impossible to distinguish between an encryption of a random
sampling and a randomly sampled ciphertext (see Appendix H.1 for an explanation why this is necessary).
We represent this condition as follows:

PKE-IND$
E ; Θ; ∅ ` ϕx,txfresh(u⃗, C) ∧ ϕx

′,()
fresh(u⃗, C)

E ; Θ ` u⃗, C[PKE.Enc(pk(kS tk), x tx, r tr)] ∼ u⃗, C[x′ ()]

We will also make use of the following property, derived from PKE-IND$ and NM-CPA (see Appendix H.2),
which states that to an attacker knowing some challenge ciphertext c, the decryption of c⊕ a is indistin-
guishable from a randomly sampled message:

PKE-XOR-CPA
E ,Θ; ∅ `pptm C,C ′,m, tr k /∈pk u⃗, C, C ′,m, tr, a E ; Θ ` [ϕ

n,()
fresh(u⃗, C, C

′,m, tr, a)] E ; Θ ` [a 6= 0]

E ; Θ ` u⃗, C[let c← PKE.Enc(pk(k tk),m, r tr);
x← c⊕ a in c,PKE.Dec(k tk, x)]

∼ u⃗, C[let c← PKE.Enc(pk(k tk),m, r tr);
x← c⊕ a in c, n ()]

4.4.2. Sender Privacy
We will only prove one of the two versions here, as the other is entirely analogous. In the abstract version,
we wish to prove the following statement:

E ,Θ `

π1(S.init(i)), R.req(j, 0, π1(S.init(i))),
S.transfer

(π1(R.req(j, 0, π1(S.init(i)))),
π2(S.init(j)), x0, x1)

∼

π1(S.init(i)), R.req(j, 0, π1(S.init(
S.transfer

(π1(R.req(j, 0, π1(S.init(i)))),
π2(S.init(j)), x0, x

′
1)

Substituting the appropriate definitions and simplifying, we get

E ,Θ `

ma i,mb i, pk(kS i),
PKE.Enc(pk(kS i), s j, r j)⊕ma i, b, s j,

x0 ⊕ s j, x1 ⊕
PKE.Dec(kS i,PKE.Enc(pk(kS i),
s j, r j)⊕ma i⊕mb i), x0, x1

∼

ma i,mb i, pk(kS i),
PKE.Enc(pk(kS i), s j, r j)⊕ma i, b, s j,

x0 ⊕ s j, x1 ⊕
PKE.Dec(kS i,PKE.Enc(pk(kS i),
s j, r j)⊕ma i⊕mb i), x0, x

′
1

We then apply PKE-XOR-CPA to exchange the decryption with a fresh random sampling n (). Note that
ma i⊕mb i 6= 0 is overwhelmingly true.

E ,Θ `
ma i,mb i, pk(kS i),

PKE.Enc(pk(kS i), s j, r j)⊕ma i, b, s j,
x0 ⊕ s j, x1 ⊕ n (), x0, x1

∼
ma i,mb i, pk(kS i),

PKE.Enc(pk(kS i), s j, r j)⊕ma i, b, s j,
x0 ⊕ s j, x1 ⊕ n (), x0, x

′
1

Next, we use the fact that exclusive or with random samplings are indistinguishable from random, so
x1 ⊕ n is indistinguishable from some fresh n′ ().

E ,Θ `
ma i,mb i, pk(kS i),

PKE.Enc(pk(kS i), s j, r j)⊕ma i, b, s j,
x0 ⊕ s j, n′ (), x0, x1

∼
ma i,mb i, pk(kS i),

PKE.Enc(pk(kS i), s j, r j)⊕ma i, b, s j,
x0 ⊕ s j, n′ (), x0, x

′
1

Since both x1 and x′1 are now fresh, the proof concludes by the indistinguishability of fresh random
samplings. This proves sender privacy for this OT protocol, receiver privacy can be found in Appendix H.3.
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4.5. Diffie-Hellman based Oblivious Transfer [9]
Bellare and Micali [9] present an algorithm based on the decisional Diffie-Hellman assumption, which we
introduce below. We can represent their scheme with the following definitions, using the names c, γ0, γ1
and r:

τinternal−sender := τmsg × τmsg × τmsg

τinternal−receiver := bool× τmsg

τmessage−init := τmsg

τmessage−req := τmsg × τmsg

τmessage−transfer := τmsg × τmsg × τmsg × τmsg

S.init(i) := (gc i, (gc i, γ0 i, γ1 i))

R.req(j, b, C) := let βb = gr j , β1−b = C/gr j in ((β0, β1), (b, r j))

S.transfer((β0, β1), (C, γ0, γ1), x0, x1) := let α0 = gγ0 , α1 = gγ1 , y0 = βγ0

0 , y1 = βγ1

1

in (α0, α1, x0 ⊕ y0, x1 ⊕ y1)
R.recv((α0, α1, c 0, c 1), (b, r)) := c b⊕ αs

b

4.5.1. Axioms for the Diffie-Hellman Assumption
The decisional Diffie-Hellman assumption states that in a cyclic group with generator g, for uniformly and
independently chosen a and b, gab is indistinguishable from a randomly chosen group element gc[11]. It
can be stated in CCSA as follows:

DDH
E ; Θ; ∅ ` ϕguarded x,tx

gx tx (u⃗, C) ∧ ϕguarded y,ty
gy ty (u⃗, C) ∧ ϕz,tzfresh(u⃗, C)

E ; Θ ` u⃗, C[g(x tx)(y ty)] ∼ u⃗, C[gz tz ]

In addition, we will also need that if we perform an exclusive or with a random group element, the
result is itself random, and that multiplying a randomly sampled group element with some known value
is indistinguishable from just a randomly chosen group element. The former is a basic property of XOR,
while the latter is a consequence of modular arithmetic.

XOR-GROUP
E ; Θ; ∅ ` ϕx,txfresh(u⃗, C) ∧ ϕy,tcfresh(u⃗, C)

E ; Θ ` u⃗, C[m⊕ gx tx ] ∼ u⃗, C[y tc]

FRESH-SHIFT
E ; Θ; ∅ ` ϕa,tafresh(u⃗, C) ∧ ϕc,tcfresh(u⃗, C)

E ; Θ ` u⃗, C[g(a ta)+b] ∼ u⃗, C[gc tc ]

4.5.2. Sender Privacy
We will only prove one of the two versions here, as the other is entirely analogous. In the abstracted
version, we wish to prove the following statement:

E ,Θ `

π1(S.init(i)),
π2(R.req(j, 0, π1(S.init(i)))), S.transfer

(π1(R.req(j, 0, π1(S.init(i)))),
π2(S.init(j)), x0, x1)

∼

π1(S.init(i)),
π2(R.req(j, 0, π1(S.init(i)))), S.transfer

(π1(R.req(j, 0, π1(S.init(i)))),
π2(S.init(j)), x0, x

′
1)

Substituting the appropriate definitions and simplifying, we get

E ,Θ ` gc i, gr j , gc i−r j , b, r j, gγ0 i, gγ1 i,
x0 ⊕ gr jγ0 i, x1 ⊕ g(c i−r j)γ1 i ∼ gc i, gr j , gc i−r j , b, r j, gγ0 i, gγ1 i,

x0 ⊕ gr jγ0 i, x′1 ⊕ g(c i−r j)γ1 i

As a first step, we will use the fact that gc i−r j is indistinguishable from a random group element since
gc i is just a random group element. We can therefore substitute c i with n i+ r j with a fresh name n i.

E ,Θ ` gn i · gr j , gr j , gn i, b, r j, gγ0 i, gγ1 i,
x0 ⊕ gr jγ0 i, x1 ⊕ gn iγ1 i ∼ gn i · gr j , gr j , gn i, b, r j, gγ0 i, gγ1 i,

x0 ⊕ gr jγ0 i, x′1 ⊕ gn iγ1 i
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Since n i and γ1 i only occur as exponents of g, we can now apply the decisional Diffie-Hellman assumption,
which states that gn1γ1 i is indistinguishable from a random group element gm i.

E ,Θ ` gn i · gr j , gr j , gn i, b, r j, gγ0 i, gγ1 i,
x0 ⊕ gr jγ0 i, x1 ⊕ gm i ∼ gn i · gr j , gr j , gn i, b, r j, gγ0 i, gγ1 i,

x0 ⊕ gr jγ0 i, x′1 ⊕ gm i

We can now use XOR-GROUP to replace the last term on both sides with a fresh random sampling. The
proof then concludes by the indistinguishability of fresh names.

4.5.3. Receiver Privacy
We wish to prove the following statement:

E ,Θ ` S.init(r), π1(R.req(r
′, 0, π1(S.init(r)))) ∼ S.init(r), π1(R.req(r

′, 1, π1(S.init(r))))

Substituting the definitions and simplifying, we get

E ,Θ ` gc i, γ0 i, γ1 i, g
r j , gc i−r j ∼ gc i, γ0 i, γ1 i, g

c i−r j , gr j

On the right-hand side, we will substitute r j with (c i− r′), yielding

E ,Θ ` gc i, γ0 i, γ1 i, g
r j , gc i−r j ∼ gc i, γ0 i, γ1 i, g

r′ , gc i−r′

The proof then concludes by the indistinguishability of fresh random samplings.

5. Conclusions
We have demonstrated that CCSA logic is indeed quite suitable for the analysis of cryptographic primitives,
whether they are derived from other primitives (Section 3) or directly from number-theoretic assumptions
(Section 4.5). As a result, we have produced an extensive set of cryptographic axioms for public key
encryption, key encapsulation and data encapsulation mechanisms (Appendix B). This includes a general
construction for side conditions (Appendix C.1) that generalizes constructions used by Baelde, Koutsos,
and Lallemand [2], as well as general proofs that may be applicable in other situations. Further, we have
introduced an abstract representation of 1-2 oblivious transfers in CCSA, which we believe should be
suitable for use as a primitive in more complex protocols (Section 4.2). We have demonstrated that it can
represent two different protocols (Sections 4.4 to 4.5).

5.1. Future Work
There are many related topics that would be interesting to explore in future work. For KEM/DEM hybrid
encryption, for example, we have only reproduced the positive results of Herranz, Hofheinz, and Kiltz [17],
not the separation results. Currently, CCSA is not well-equipped to reason about distinguishability (i.e.
negated indistinguishability), which would be necessary for the counterexamples used in those proofs.
For oblivious transfers, it currently remains open to actually use our abstract representation in a pro-

tocol. It is thus possible that our representation could benefit from some changes in order to be more
useful for this purpose, but this remains to be investigated. Beyond that, however, it would be interesting
to explore mechanisms of protocol composition instead of representing protocols as terms, as the latter is
somewhat restricted and will likely not be able to capture all possible implementations. Some work on
protocol composition has been done by Comon, Jacomme, and Scerri [12], but we have not investigated
whether it can be used for this purpose.
Finally, it is as of yet not clear how this work might eventually be represented in the proof assistant

Squirrel, i.e. how to provide definitions of a cryptographic primitive and the proofs of its security prop-
erties in a modular way that allows not only using the primitive for many protocols, but also substituting
different primitives with the same guarantees.
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A. Basic CCSA Axioms
We list here a few axioms that are relevant to the proofs in this work. All axioms are taken from Baelde,
Koutsos, and Lallemand [2].

A.1. Symmetry and Transitivity of Indistinguishability
Symmetry
E ; Θ ` u⃗ ∼ v⃗
E ; Θ ` v⃗ ∼ u⃗

Transitivity
E ; Θ ` u⃗ ∼ v⃗ E ; Θ ` v⃗ ∼ w⃗

E ; Θ ` u⃗ ∼ w⃗

A.2. Indistinguishability of Fresh Names
Fresh
E ; Θ ` [ϕn,tfresh(u⃗, t)]

E ; Θ ` u⃗, n t ∼ ⃗u, nfresh ()

Here, nfresh is assumed to be a new, unused name with index type unit and the same probability distri-
bution as n. The formula ϕn,tfresh(u⃗, t) ensures that the sampling n t is not used anywhere in u⃗ and t (and
therefore that u⃗ is independent of n t). See either Baelde, Koutsos, and Lallemand [2] for the original
definition, or Appendix C.1 for a more general construction.

A.3. Rewriting and β-equivalence
If two terms are equal with overwhelming probability [t1 = t2], then this equality can be used to rewrite
underneath an indistinguishability predicate, as any adversary can distinguish between the two in at most
the cases where t1 and t2 are not equal, which is negligible. This is represented by the following axiom:

Rewrite
E ; Θ ` F [s] E ; Θ ` [s = t] [] does not appear below const(·) or adv(·) in F []

E ; Θ ` F [t]

Note that we have not introduced the adv(·) predicate, but chose to include it here to match the definition
by Baelde, Koutsos, and Lallemand [2]. Similarly, it is possible to rewrite within a boolean formula1:

Rewrite’
E ; Θ ` [ϕ[s]] E ; Θ ` [s = t]

E ; Θ ` [ϕ[t]]

Note that this also gives us transitivity of [· = ·].
These axioms are especially useful in conjunction with the following, which allows to derive equality

from β-equivalence:

β

E ; Θ ` [(λ(x : τ).t) t0 = t{x 7→ t0}]

While this axiom only applies to one single β-reduction, it allows us to obtain equality of any β-equivalent
terms since = is an equivalence relation.

1adapted from a rule for local judgements by Baelde, Koutsos, and Lallemand [2]
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B. KEM/DEM: All Axioms

B.1. KEM
B.1.1. IND

KEM-IND-CPA
E ,Θ; ∅ `pptm C, a⃗, tk, tr E ,Θ ` const(tr)

E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C, a⃗)] E ,Θ ` [ϕ
sk∗,()
fresh (C, a⃗)] E ,Θ ` [ϕguarded k,tk

pk(k tk)
(C, a⃗)]

E ,Θ ` (λ v⃗ (sk, c).C) a⃗ KEM.Enc(pk(k tk), r tr) ∼
(λ v⃗ (sk, c).C) a⃗

(sk∗(), π2 KEM.Enc(pk(k tk), r tr))

KEM-IND-CCA1
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C, a⃗)]

E ,Θ ` [ϕ
sk∗,()
fresh (C, a⃗)] E ,Θ ` [ϕguarded k,tk

pk(k tk)
(C)] E ,Θ ` [ϕguarded k,tk

pk(k tk),KEM.Dec(k tk,·)(⃗a)]

E ,Θ ` (λ v⃗ (sk, c).C) a⃗ KEM.Enc(pk(k tk), r tr) ∼
(λ v⃗ (sk, c).C) a⃗

(sk∗(), π2 KEM.Enc(pk(k tk), r tr))

KEM-IND-CCA2
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C, a⃗)] E ,Θ ` [ϕ
sk∗,()
fresh (C, a⃗)]

E ,Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a)] E ,Θ ` [ϕguarded k,tk

pk(k tk),if t=c then ⊥ else KEM.Dec(k tk,t)
(C)]

E ,Θ ` (λ v⃗ (sk, c).C) a⃗ KEM.Enc(pk(k tk), r tr) ∼
(λ v⃗ (sk, c).C) a⃗

(sk∗(), π2 KEM.Enc(pk(k tk), r tr))

KEM-IND-CCA2’
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C, a⃗)]

E ,Θ ` [ϕ
sk∗,()
fresh (C, a⃗)] E ,Θ ` [ϕguarded k,tk

pk(k tk)
(C)] E ,Θ ` [ϕguarded k,tk

pk(k tk),KEM.Dec(k tk,·)(⃗a)]

E ,Θ `

(λ v⃗ (sk, c) dec.C) a⃗
KEM.Enc(pk(k tk), r tr)

(λc.if c = π2 KEM.Enc(pk(k tk), r tr)
then ⊥ else KEM.Dec(k tk, c))

∼

(λ v⃗ (sk, c) dec.C) a⃗
(sk∗(), π2 KEM.Enc(pk(k tk), r tr))
(λc.if c = π2 KEM.Enc(pk(k tk), r tr)

then ⊥ else KEM.Dec(k tk, c))

B.1.2. NM
Since a KEM does not encrypt a message, but generates a symmetric key instead, the notion of nonmal-
leability for PKEs and DEMs does not translate directly. Instead, we provide four different sets of axioms
for definitions from Herranz, Hofheinz, and Kiltz [17] and Nagao, Manabe, and Okamoto [20]. Of these,
weak NM is strictly weaker than the others, while the others are all equivalent (see Appendix G.1).

wNM
KEM-wNM-CPA

E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr) E ,Θ ` const(tk)

E ; Θ ` [ϕr,trfresh(⃗a, a⃗
′, C, C ′)] E ; Θ ` [ϕguarded k,tk

pk(k tk)
(⃗a, a⃗′, C, C ′)] E ; Θ ` [ϕ

k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 r. C

′) a⃗′ c k0
(let x = ((λv⃗ c. C) a⃗ c) in if x = c then ⊥

else KEM.Dec(k tk, x))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 r. C

′) a⃗′ c (k∗ ())
(let x = ((λv⃗ c. C) a⃗ c) in if x = c then ⊥

else KEM.Dec(k tk, x))
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KEM-wNM-CCA1
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr) E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗

′, C, C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk)

(C,C ′)] E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a, a⃗

′)] E ; Θ ` [ϕ
k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 r. C

′) a⃗′ c k0
(let x = ((λv⃗ c. C) a⃗ c) in if x = c then ⊥

else KEM.Dec(k tk, x))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 r. C

′) a⃗′ c (k∗ ())
(let x = ((λv⃗ c. C) a⃗ c) in if x = c then ⊥

else KEM.Dec(k tk, x))

For CCA2, note that decryption queries may never depend on k0. Therefore, the context must be split,
where C ′ corresponds to the second phase of the game, and C ′′ corresponds to the attacker-chosen relation.
We also require that C ′ is of order 0 for wNM, to prevent passing a decryption function to C ′′.

KEM-wNM-CCA2
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr) E ,Θ ` const(tk)

E ; Θ ` [ϕr,trfresh(⃗a, a⃗
′, C, C ′, C ′′)] E ; Θ ` [ϕguarded k,tk

pk(k tk),if t=c then ⊥ else KEM.Dec(k tk,t)
(C,C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a)] E ; Θ ` [ϕguarded k,tk

pk(k tk)
(C ′′)] E ; Θ ` [ϕ

k∗,()
fresh (⃗a, a⃗

′, C, C ′, C ′′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λk0. C

′′) ((λv⃗ c r. C ′) a⃗′ c k0
(let x = ((λv⃗ c. C) a⃗ c) in if x = c then ⊥

else KEM.Dec(k tk, x)))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λk0. C

′′) ((λv⃗ c r. C ′) a⃗′ c (k∗ ())
(let x = ((λv⃗ c. C) a⃗ c) in if x = c then ⊥

else KEM.Dec(k tk, x)))

KEM-wNM-CCA2’
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr) E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗

′, C, C ′, C ′′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a)] E ; Θ ` [ϕguarded k,tk

pk(k tk)
(C,C ′, C ′′)] E ; Θ ` [ϕ

k∗,()
fresh (⃗a, a⃗

′, C, C ′, C ′′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr);
dec = λx. if x = c then ⊥

else KEM.Dec(k tk, x) in (λk0. C
′′)

((λv⃗ c r dec. C ′) a⃗′ c k0
(let x = ((λv⃗ c. C) a⃗ c) in if x = c then ⊥

else KEM.Dec(k tk, x)) dec)

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr);
dec = λx. if x = c then ⊥

else KEM.Dec(k tk, x) in (λk0. C
′′)

((λv⃗ c r dec. C ′) a⃗′ c (k∗ ())
(let x = ((λv⃗ c. C) a⃗ c) in if x = c then ⊥

else KEM.Dec(k tk, x)) dec)

sNM

As mentioned in Section 3.2.2, we can treat the attacker-defined relation as if it had access to the same
oracles as the attacker, greatly simplifying the presentation as an axiom. This is justified formally in
Appendix G.1.3.
We use order(k0, k

∗ ()) to give the adversary access to both keys without communicating which one is
which. For randomly sampled keys, each order is equally likely.

KEM-sNM-CPA
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr) E ,Θ ` const(tk)

E ; Θ ` [ϕr,trfresh(⃗a, a⃗
′, C, C ′)] E ; Θ ` [ϕguarded k,tk

pk(k tk)
(⃗a, a⃗′, C, C ′)] E ; Θ ` [ϕ

k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c k0 order(k0, k
∗ ())

(let x = (λv⃗ c p. C) a⃗ c order(k0, k
∗ ())

in if x = c then ⊥ else KEM.Dec(k tk, x))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c (k∗ ())
order(k0, k

∗ ()) (let x = (λv⃗ c p. C) a⃗ c
order(k0, k

∗ ()) in if x = c then ⊥
else KEM.Dec(k tk, x))

KEM-sNM-CCA1
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr) E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗

′, C, C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk)

(C,C ′)] E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a, a⃗

′)] E ; Θ ` [ϕ
k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c k0 order(k0, k
∗ ())

(let x = (λv⃗ c p. C) a⃗ c order(k0, k
∗ ())

in if x = c then ⊥ else KEM.Dec(k tk, x))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c (k∗ ())
order(k0, k

∗ ()) (let x = (λv⃗ c p. C) a⃗ c
order(k0, k

∗ ()) in if x = c then ⊥
else KEM.Dec(k tk, x))
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With the standard definition of sNM-CCA2, queries depending on k0 in C ′ are not technically allowed, as
any oracle queries in the construction of the relation do not yet have access to the symmetric key. However,
since the adversary has access to an ordered pair of both keys and can either perform the queries for both
keys and choose which result to use later, or it can pick one key at random and negate the relation if it
picked incorrectly. The latter version is shown to be equivalent to sNM-CCA2 in Appendix G.1.3.

KEM-sNM-CCA2
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr)

E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗
′, C, C ′)] E ; Θ ` [ϕguarded k,tk

pk(k tk),if t=c then ⊥ else KEM.Dec(k tk,t)
(C,C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a)] E ; Θ ` [ϕ

k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c k0 order(k0, k
∗ ())

(let x = (λv⃗ c p. C) a⃗ c order(k0, k
∗ ())

in if x = c then ⊥ else KEM.Dec(k tk, x))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c (k∗ ())
order(k0, k

∗ ()) (let x = (λv⃗ c p. C) a⃗ c
order(k0, k

∗ ()) in if x = c then ⊥
else KEM.Dec(k tk, x))

KEM-sNM-CCA2’
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr) E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗

′, C, C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk)

(C,C ′)] E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a)] E ; Θ ` [ϕ

k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr);
dec = λx. if x = c then ⊥
else KEM.Dec(k tk, x k

in (λv⃗ c k0 p r dec. C
′) a⃗′ c k0

order(k0, k
∗ ()) (let x = (λv⃗ c p dec. C) a⃗

c order(k0, k
∗ ()) dec in if x = c then ⊥

else KEM.Dec(k tk, x)) dec

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr);
dec = λx. if x = c then ⊥
else KEM.Dec(k tk, x k

in (λv⃗ c k0 p r dec. C
′) a⃗′ c (k∗ ())

order(k0, k
∗ ()) (let x = (λv⃗ c p dec. C) a⃗

c order(k0, k
∗ ()) dec in if x = c then ⊥

else KEM.Dec(k tk, x)) dec

PNM
KEM-PNM-CPA

E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr) E ,Θ ` const(tk)

E ; Θ ` [ϕr,trfresh(⃗a, a⃗
′, C, C ′)] E ; Θ ` [ϕguarded k,tk

pk(k tk)
(⃗a, a⃗′, C, C ′)] E ; Θ ` [ϕ

k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 r. C

′) a⃗′ c k0
(let x = (λv⃗ c k0. C) a⃗ c k0 in if x = c

then ⊥ else KEM.Dec(k tk, x))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 r. C

′) a⃗′ c (k∗ ())
(let x = (λv⃗ c k0. C) a⃗ c (k

∗ ())
in if x = c then ⊥ else KEM.Dec(k tk, x))

KEM-PNM-CCA1
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr) E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗

′, C, C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk)

(C,C ′)] E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a, a⃗

′)] E ; Θ ` [ϕ
k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 r. C

′) a⃗′ c k0
(let x = (λv⃗ c k0. C) a⃗ c k0 in if x = c

then ⊥ else KEM.Dec(k tk, x))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 r. C

′) a⃗′ c (k∗ ())
(let x = (λv⃗ c k0. C) a⃗ c (k

∗ ())
in if x = c then ⊥ else KEM.Dec(k tk, x))

KEM-PNM-CCA2
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr)

E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗
′, C, C ′)] E ; Θ ` [ϕguarded k,tk

pk(k tk),if t=c then ⊥ else KEM.Dec(k tk,t)
(C,C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a)] E ; Θ ` [ϕ

k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p. C

′) a⃗′ c k0
(let x = (λv⃗ c p. C) a⃗ c k0 in if x = c

then ⊥ else KEM.Dec(k tk, x))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p. C

′) a⃗′ c (k∗ ())
(let x = (λv⃗ c p. C) a⃗ c (k∗ ()) in if x = c

then ⊥ else KEM.Dec(k tk, x))
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KEM-PNM-CCA2
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr) E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗

′, C, C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk)

(C,C ′)] E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a)] E ; Θ ` [ϕ

k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr);
dec = λx. if x = c then ⊥
else KEM.Dec(k tk, x)

in (λv⃗ c k0 p dec. C
′) a⃗′ c k0

(let x = (λv⃗ c p dec. C) a⃗ c k0 dec
in if x = c then ⊥ else KEM.Dec(k tk, x))

dec

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr);
dec = λx. if x = c then ⊥
else KEM.Dec(k tk, x)

in (λv⃗ c k0 p dec. C
′) a⃗′ c (k∗ ())

(let x = (λv⃗ c p dec. C) a⃗ c (k∗ ()) dec
in if x = c then ⊥ else KEM.Dec(k tk, x))

dec

CNM
KEM-CNM-CPA
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr) E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗

′, C, C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk)

(⃗a, a⃗′, C, C ′)] E ; Θ ` [ϕ
k∗,()
fresh (⃗a, a⃗

′, C, C ′)] E ; Θ ` [ϕ
k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c k0 order(k0, k
′ ())

(let x = (λv⃗ c p. C) a⃗ c order(k0, k
′ ())

in if x = c then ⊥ else KEM.Dec(k tk, x))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c (k∗ ())
order(k∗ (), k′ ()) (let x = (λv⃗ c p. C) a⃗ c

order(k∗ (), k′ ()) in if x = c then ⊥
else KEM.Dec(k tk, x))

KEM-CNM-CCA1
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk

E ,Θ ` const(tr) E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗
′, C, C ′)] E ; Θ ` [ϕguarded k,tk

pk(k tk)
(C,C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a, a⃗

′)] E ; Θ ` [ϕ
k∗,()
fresh (⃗a, a⃗

′, C, C ′)] E ; Θ ` [ϕ
k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c k0 order(k0, k
′ ())

(let x = (λv⃗ c p. C) a⃗ c order(k0, k
′ ())

in if x = c then ⊥ else KEM.Dec(k tk, x))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c (k∗ ())
order(k∗ (), k′ ()) (let x = (λv⃗ c p. C) a⃗ c

order(k∗ (), k′ ()) in if x = c then ⊥
else KEM.Dec(k tk, x))

Similar to sNM-CCA2, queries depending on k0 in C ′ are not technically allowed. However, they can be
allowed for the same reason.

KEM-CNM-CCA2
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk E ,Θ ` const(tr)

E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗
′, C, C ′)] E ; Θ ` [ϕguarded k,tk

pk(k tk),if t=c then ⊥ else KEM.Dec(k tk,t)
(C,C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a)] E ; Θ ` [ϕ

k∗,()
fresh (⃗a, a⃗

′, C, C ′)] E ; Θ ` [ϕ
k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c k0 order(k0, k
′ ())

(let x = (λv⃗ c p. C) a⃗ c order(k0, k
′ ())

in if x = c then ⊥ else KEM.Dec(k tk, x))

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr)
in (λv⃗ c k0 p r. C

′) a⃗′ c (k∗ ())
order(k∗ (), k′ ()) (let x = (λv⃗ c p. C) a⃗ c

order(k∗ (), k′ ()) in if x = c then ⊥
else KEM.Dec(k tk, x))

KEM-CNM-CCA2’
E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk

E ,Θ ` const(tr) E ,Θ ` const(tk) E ; Θ ` [ϕr,trfresh(⃗a, a⃗
′, C, C ′)] E ; Θ ` [ϕguarded k,tk

pk(k tk)
(C,C ′)]

E ; Θ ` [ϕguarded k,tk
pk(k tk),KEM.Dec(k tk,·)(⃗a)] E ; Θ ` [ϕ

k∗,()
fresh (⃗a, a⃗

′, C, C ′)] E ; Θ ` [ϕ
k∗,()
fresh (⃗a, a⃗

′, C, C ′)]

E ,Θ `

let (k0, c) = KEM.Enc(pk(k tk), r tr);
dec = λx. if x = c then ⊥
else KEM.Dec(k tk, x k

in (λv⃗ c k0 p r dec. C
′) a⃗′ c k0

order(k0, k
′ ()) (let x = (λv⃗ c p dec. C) a⃗ c

order(k0, k
′ ()) dec in if x = c then ⊥

else KEM.Dec(k tk, x)) dec

∼

let (k0, c) = KEM.Enc(pk(k tk), r tr);
dec = λx. if x = c then ⊥
else KEM.Dec(k tk, x k

in (λv⃗ c k0 p r dec. C
′) a⃗′ c (k∗ ())

order(k∗ (), k′ ()) (let x = (λv⃗ c p dec. C)
a⃗ c order(k∗ (), k′ ()) dec in if x = c
then ⊥ else KEM.Dec(k tk, x)) dec
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B.2. DEM
B.2.1. IND

DEM-IND-OT
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C, a⃗,m)] E ,Θ ` [ϕr,trfresh(C, a⃗,m)]

E ,Θ ` (λ v⃗ c.C) a⃗ DEM.Enc(k tk,m, r tr) ∼ (λ v⃗ c.C) a⃗ DEM.Enc(k tk, 0
|m|, r tr)

DEM-IND-CPA
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk)

E ,Θ ` [ϕr,trfresh(C, a⃗,m)] E ,Θ ` [ϕk,tkdem−rand(C, a⃗,m)] E ,Θ ` [ϕguarded k,tk
DEM.Enc(k tk,·,·)(C, a⃗,m)]

E ,Θ ` (λ v⃗ c.C) a⃗ DEM.Enc(k tk,m, r tr) ∼ (λ v⃗ c.C) a⃗ DEM.Enc(k tk, 0
|m|, r tr)

DEM-IND-CCA1
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C, a⃗,m)] E ,Θ ` [ϕk,tkdem−rand(C, a⃗,m)]

E ,Θ ` [ϕguarded k,tk
DEM.Enc(k tk,·,·)(C)] E ,Θ ` [ϕguarded k,tk

DEM.Enc(k tk,·,·),DEM.Dec(k tk,·)(⃗a,m)]

E ,Θ ` (λ v⃗ c.C) a⃗ DEM.Enc(k tk,m, r tr) ∼ (λ v⃗ c.C) a⃗ DEM.Enc(k tk, 0
|m|, r tr)

DEM-IND-CCA2
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk)

E ,Θ ` [ϕr,trfresh(C, a⃗,m)] E ,Θ ` [ϕk,tkdem−rand(C, a⃗,m)] E ,Θ ` [ϕguarded k,tk
DEM.Enc(k tk,·,·),DEM.Dec(k tk,·)(⃗a,m)]

E ,Θ ` [ϕguarded k,tk
DEM.Enc(k tk,·,·),if t=c then ⊥ else DEM.Dec(k tk,t)

(C)]

E ,Θ ` (λ v⃗ c.C) a⃗ DEM.Enc(k tk,m, r tr) ∼ (λ v⃗ c.C) a⃗ DEM.Enc(k tk, 0
|m|, r tr)

DEM-IND-CCA2’
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C, a⃗,m)] E ,Θ ` [ϕk,tkdem−rand(C, a⃗,m)]

E ,Θ ` [ϕguarded k,tk
DEM.Enc(k tk,·,·)(C)] E ,Θ ` [ϕguarded k,tk

DEM.Enc(k tk,·,·),DEM.Dec(k tk,·)(⃗a,m)]

E ,Θ `
(λ v⃗ c dec.C) a⃗ DEM.Enc(k tk,m, r tr)

(λx.if x = DEM.Enc(k tk,m, r tr)
then ⊥ else DEM.Dec(k tk, x))

∼
(λ v⃗ cdec.C) a⃗ DEM.Enc(k tk, 0

|m|, r tr)
(λx.if x = DEM.Enc(k tk, 0

|m|, r tr)
then ⊥ else DEM.Dec(k tk, x))

DEM-IND-OTCCA
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C, a⃗,m)] E ,Θ ` [ϕk,tkdem−rand(C, a⃗,m)]

E ,Θ ` [ϕguarded k,tk
DEM.Dec(k tk,·)(⃗a,m)] E ,Θ ` [ϕguarded k,tk

if t=c then ⊥ else DEM.Dec(k tk,t)
(C)]

E ,Θ ` (λ v⃗ c.C) a⃗ DEM.Enc(k tk,m, r tr) ∼ (λ v⃗ c.C) a⃗ DEM.Enc(k tk, 0
|m|, r tr)

DEM-IND-OTCCA’
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C, a⃗,m)]

E ,Θ ` [ϕk,tkdem−rand(C, a⃗,m)] E ,Θ ` [ϕk,tkfresh(C)] E ,Θ ` [ϕguarded k,tk
DEM.Dec(k tk,·)(⃗a,m)]

E ,Θ `
(λ v⃗ c dec.C) a⃗ DEM.Enc(k tk,m, r tr)

(λx.if x = DEM.Enc(k tk,m, r tr)
then ⊥ else DEM.Dec(k tk, x))

∼
(λ v⃗ cdec.C) a⃗ DEM.Enc(k tk, 0

|m|, r tr)
(λx.if x = DEM.Enc(k tk, 0

|m|, r tr)
then ⊥ else DEM.Dec(k tk, x))

B.2.2. NM
DEM-NM-OT

E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C,C
′, a⃗, a⃗′,m)] E ,Θ ` [ϕk,tkfresh(C,C

′, a⃗, a⃗′,m)]

E ,Θ `

let c = DEM.Enc(k tk,m, r tr)
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else DEM.Dec(k tk, x))

∼
let c = DEM.Enc(k tk, 0

|m|, r tr)
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else DEM.Dec(k tk, x))
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DEM-NM-CPA
E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m E ,Θ ` const(tr)

E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C,C
′, a⃗, a⃗′,m)] E ,Θ ` [ϕguarded k,tk

DEM.Enc(k tk,·,·)(C,C
′, a⃗, a⃗′,m)]

E ,Θ `

let c = DEM.Enc(k tk,m, r tr)
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else DEM.Dec(k tk, x))

∼
let c = DEM.Enc(k tk, 0

|m|, r tr)
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else DEM.Dec(k tk, x))

DEM-NM-CCA1
E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C,C
′, a⃗, a⃗′,m)]

E ,Θ ` [ϕguarded k,tk
DEM.Enc(k tk,·,·)(C,C

′)] E ,Θ ` [ϕguarded k,tk
DEM.Enc(k tk,·,·),DEM.Dec(k tk,·)(⃗a, a⃗

′,m)]

E ,Θ `

let c = DEM.Enc(k tk,m, r tr)
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else DEM.Dec(k tk, x))

∼
let c = DEM.Enc(k tk, 0

|m|, r tr)
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else DEM.Dec(k tk, x))

DEM-NM-CCA2
E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m E ,Θ ` const(tr)

E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C,C
′, a⃗, a⃗′,m)] E ,Θ ` [ϕguarded k,tk

DEM.Enc(k tk,·,·),DEM.Dec(k tk,·)(⃗a, a⃗
′,m)]

E ,Θ ` [ϕguarded k,tk
DEM.Enc(k tk,·,·),if t=c then ⊥ else DEM.Dec(k tk,t)

(C,C ′)]

E ,Θ `

let c = DEM.Enc(k tk,m, r tr)
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else DEM.Dec(k tk, x))

∼
let c = DEM.Enc(k tk, 0

|m|, r tr)
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else DEM.Dec(k tk, x))

DEM-NM-CCA2’
E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C,C
′, a⃗, a⃗′,m)]

E ,Θ ` [ϕguarded k,tk
DEM.Enc(k tk,·,·)(C,C

′)] E ,Θ ` [ϕguarded k,tk
DEM.Enc(k tk,·,·),DEM.Dec(k tk,·)(⃗a, a⃗

′,m)]

E ,Θ `

let c = DEM.Enc(k tk,m, r tr);
dec = (λx.if x = DEM.Enc(k tk,m, r tr)

then ⊥ else DEM.Dec(k tk, x))
in (λ v⃗ c m M dec.C ′) a⃗′ c m

(let x = (λ v⃗ c dec.C) a⃗ c dec in if x = c
then ⊥ else DEM.Dec(k tk, x)) dec

∼

let c = DEM.Enc(k tk, 0
|m|, r tr);

dec = (λx.if x = DEM.Enc(k tk,m, r tr)
then ⊥ else DEM.Dec(k tk, x))
in (λ v⃗ c m M dec.C ′) a⃗′ c m

(let x = (λ v⃗ c dec.C) a⃗ c dec in if x = c
then ⊥ else DEM.Dec(k tk, x)) dec

DEM-NM-OTCCA
E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr,trfresh(C,C
′, a⃗, a⃗′,m)]

E ,Θ ` [ϕguarded k,tk
DEM.Dec(k tk,·)(⃗a, a⃗

′,m)] E ,Θ ` [ϕguarded k,tk
if t=c then ⊥ else DEM.Dec(k tk,t)

(C,C ′)]

E ,Θ `

let c = DEM.Enc(k tk,m, r tr)
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else DEM.Dec(k tk, x))

∼
let c = DEM.Enc(k tk, 0

|m|, r tr)
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else DEM.Dec(k tk, x))

DEM-NM-OTCCA’
E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk)

E ,Θ ` [ϕr,trfresh(C,C
′, a⃗, a⃗′,m)] E ,Θ ` [ϕk,tkfresh(C,C

′)] E ,Θ ` [ϕguarded k,tk
DEM.Dec(k tk,·)(⃗a, a⃗

′,m)]

E ,Θ `

let c = DEM.Enc(k tk,m, r tr);
dec = (λx.if x = DEM.Enc(k tk,m, r tr)

then ⊥ else DEM.Dec(k tk, x))
in (λ v⃗ c m M dec.C ′) a⃗′ c m

(let x = (λ v⃗ c dec.C) a⃗ c dec in if x = c
then ⊥ else DEM.Dec(k tk, x)) dec

∼

let c = DEM.Enc(k tk, 0
|m|, r tr);

dec = (λx.if x = DEM.Enc(k tk,m, r tr)
then ⊥ else DEM.Dec(k tk, x))
in (λ v⃗ c m M dec.C ′) a⃗′ c m

(let x = (λ v⃗ c dec.C) a⃗ c dec in if x = c
then ⊥ else DEM.Dec(k tk, x)) dec
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B.3. PKE
B.3.1. IND
PKE-IND-CPA

E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr)

E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C, a⃗,m)] E ,Θ ` [ϕr2,trfresh(C, a⃗,m)] E ,Θ ` [ϕguarded k,tk
pk(k tk)

(C, a⃗,m)]

E ,Θ ` (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

∼ (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))

PKE-IND-CCA1
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C, a⃗,m)]

E ,Θ ` [ϕr2,trfresh(C, a⃗,m)] E ,Θ ` [ϕguarded k,tk
pk(k tk)

(C)] E ,Θ ` [ϕguarded k,tk
pk(k tk),PKE.Dec(k tk,·)(⃗a,m)]

E ,Θ ` (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

∼ (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))

PKE-IND-CCA2
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C, a⃗,m)] E ,Θ ` [ϕr2,trfresh(C, a⃗,m)]

E ,Θ ` [ϕguarded k,tk
pk(k tk),PKE.Dec(k tk,·)(⃗a,m)] E ,Θ ` [ϕguarded k,tk

pk(k tk),if t=c then ⊥ else PKE.Dec(k tk,t)
(C)]

E ,Θ ` (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

∼ (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))

PKE-IND-CCA2’
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C, a⃗,m)]

E ,Θ ` [ϕr2,trfresh(C, a⃗,m)] E ,Θ ` [ϕguarded k,tk
pk(k tk)

(C)] E ,Θ ` [ϕguarded k,tk
pk(k tk),PKE.Dec(k tk,·)(⃗a,m)]

E ,Θ `

(λ v⃗ c dec.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

(λx.if x =
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

then ⊥ else PKE.Dec(k tk, x))

∼

(λ v⃗ cdec.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))
(λx.if x =

PKE.Enc(pk(k tk), 0
|m|, (r1 tr, r2 tr))

then ⊥ else PKE.Dec(k tk, x))

B.3.2. NM
PKE-NM-CPA

E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk)

E ,Θ ` [ϕr1,trfresh(C,C
′, a⃗, a⃗′,m)] E ,Θ ` [ϕr2,trfresh(C,C

′, a⃗, a⃗′,m)] E ,Θ ` [ϕguarded k,tk
pk(k tk)

(C,C ′, a⃗, a⃗′,m)]

E ,Θ `

let c = PKE.Enc(k tk,m, (r1 tr, r2 tr))
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else PKE.Dec(k tk, x))

∼
let c = PKE.Enc(k tk, 0

|m|, (r1 tr, r2 tr))
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else PKE.Dec(k tk, x))

PKE-NM-CCA1
E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C,C
′, a⃗, a⃗′,m)]

E ,Θ ` [ϕr2,trfresh(C,C
′, a⃗, a⃗′,m)] E ,Θ ` [ϕguarded k,tk

pk(k tk)
(C,C ′)] E ,Θ ` [ϕguarded k,tk

pk(k tk),PKE.Dec(k tk,·)(⃗a, a⃗
′,m)]

E ,Θ `

let c = PKE.Enc(k tk,m, (r1 tr, r2 tr))
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else PKE.Dec(k tk, x))

∼
let c = PKE.Enc(k tk, 0

|m|, (r1 tr, r2 tr))
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else PKE.Dec(k tk, x))
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PKE-NM-CCA2
E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C,C
′, a⃗, a⃗′,m)] E ,Θ ` [ϕr2,trfresh(C,C

′, a⃗, a⃗′,m)]

E ,Θ ` [ϕguarded k,tk
pk(k tk),PKE.Dec(k tk,·)(⃗a, a⃗

′,m)] E ,Θ ` [ϕguarded k,tk
pk(k tk),if t=c then ⊥ else PKE.Dec(k tk,t)

(C,C ′)]

E ,Θ `

let c = PKE.Enc(k tk,m, (r1 tr, r2 tr))
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else PKE.Dec(k tk, x))

∼
let c = PKE.Enc(k tk, 0

|m|, (r1 tr, r2 tr))
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else PKE.Dec(k tk, x))

PKE-NM-CCA2’
E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C,C
′, a⃗, a⃗′,m)]

E ,Θ ` [ϕr2,trfresh(C,C
′, a⃗, a⃗′,m)] E ,Θ ` [ϕguarded k,tk

pk(k tk)
(C,C ′)] E ,Θ ` [ϕguarded k,tk

pk(k tk),PKE.Dec(k tk,·)(⃗a, a⃗
′,m)]

E ,Θ `

let c = PKE.Enc(k tk,m, (r1 tr, r2 tr));
dec = (λx.if x =

PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))
then ⊥ else PKE.Dec(k tk, x))
in (λ v⃗ c m M dec.C ′) a⃗′ c m

(let x = (λ v⃗ c dec.C) a⃗ c dec in if x = c
then ⊥ else PKE.Dec(k tk, x)) dec

∼

let c = PKE.Enc(k tk, 0
|m|, (r1 tr, r2 tr));

dec = (λx.if x =
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

then ⊥ else PKE.Dec(k tk, x))
in (λ v⃗ c m M dec.C ′) a⃗′ c m

(let x = (λ v⃗ c dec.C) a⃗ c dec in if x = c
then ⊥ else PKE.Dec(k tk, x)) dec

Note that PKE-NM-CCA2 and PKE-NM-CCA2’ are mostly provided for completeness, and illustrative
purposes. They would be quite cumbersome to use, and it is easy to see that the decryption oracle in
PKE-IND-CCA2 (resp. PKE-IND-CCA2’) is sufficiently powerful to handle any decryption occurring in
PKE-NM-CCA2 (resp. PKE-NM-CCA2’).

C. Side Conditions: Restricting the Usage of
Names

C.0.1. Generalized Subterms
The following definitions build on the concept of generalized subterms[2] of a term t. Intuitively, this
describes all subterms that may be encountered when computing t, including subterms of defined functions
in the environment. However, generalized subterms are also equipped with a formula ψ that captures the
conditions under which the subterm will be encountered, and a vector of bound variables α⃗.
Generalized subterms are defined by the following function:

ST E(x) :=

{
{(ϵ, true, x)} when (x : τ) ∈ E or x /∈ E
ST E(t) when (x : τ = t) ∈ E

ST E(t t
′) :=

{
ST E(t0{y 7→ t′}) when t = x and (x : τ = λy.t0) ∈ E
{(ϵ, true, (t t′))} ∪ ST E(t) ∪ ST E(t

′) otherwise
ST E(λ(x : τ)τ) := {(ϵ, true, λ(x : τ)τ)} ∪ (x : τ).ST E(t)

ST E(if ϕ then t1 else t0) := {(ϵ, true, if ϕ then t1 else t0)} ∪ ST E(ϕ) ∪ [ϕ]ST E(t1) ∪ [ϕ]ST E(t0)

[ϕ]S := {(α⃗, ψ ∧ ϕ, t) | (α⃗, ψ, t) ∈ S}
(x : τ).S := {((α⃗, x : τ), ψ, t) | (α⃗, ψ, t) ∈ S}
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C.1. Guarded Occurrences
As seen in Section 3, axioms often require that some random sampling n tn may only be used in certain
specific contexts. We say that these contexts guard the occurrence of the name. Importantly, however, it
is not sufficient to check this purely syntactically, as different index terms can have the same value, and
thus refer to the same random sampling.
Instead, we represent such conditions using a formula ϕguarded n,tn

C , where C is a set of guarding contexts
with no overlap. ϕguarded n,tn

C is actually not uniquely defined, but instead deliberately allowed to represent
any formula satisfying certain requirement. We will give a suitable construction below, however, this will
be an overapproximation, so it may be necessary to use a more precise formula in some cases.
To formally state the formal requirements for ϕguarded n,tn

C , we need to define generalized subterms with
exclusions. We thus define a function ST excl

E,C1,C2,n,tn(t), where E is an environment, n, tn are the name
and index to be guarded, and C1 and C2 are two sets of contexts. Contexts in C1 will only apply to direct
subterms, whereas those in C2 also apply to subterms in the environment. Its definition is analogous to
that of generalized subterms, except for the following cases:

ST excl
E,C1,C2,n,tn(t) :=∅

ST excl
E,C1,C2,n,tn(C[v⃗, n t0]) :=ST

excl
E,C1,C2,n,tn(C[v⃗, n t0])

∪ ST excl
E,C1,C2,n,tn(t0)

∪ [t0 6= tn]ST excl
E,C1,C2,n,tn(n t0)

for C ∈ C0,C1

ST excl
E,C1,C2,n,tn(x) :=ST

excl
E,∅,C2,n,t n(t) when (x : τ = t ∈ E)

This definition makes use of marked terms t to denote those occurrences of names that should be skipped.
These are treated as distinct for the purposes of pattern matching (for example, in the C[v⃗, n t0] case, a
marking is applied to the subterms n t0, which prevents this case from applying again on the recursive
call). However, all markings are removed again in the final result.
ϕguarded n,tn
C (t) can represent any formula which guarantees that, for every model M : E of Θ, for every

η ∈ N and ρ ∈ TM,η,

J[ϕguarded n,tn
C (t)]Kη,ρM:E = 1 =⇒
∀(α⃗, ψ, n t0) ∈ ST excl

E,∅,C,n,tn(t),J∀α⃗, ψ =⇒ tn 6= t0Kη,ρM:E = 1 (*)

Note that ∀α⃗ quantifies over all possible values of the variables in a⃗ (by syntactically inserting a⃗ into the
formula).
Baelde, Koutsos, and Lallemand [2] provide a suitable construction for such a formula: Let ST excl

E,∅,C,n,tn
0
(·)

denote the restriction of ST excl
E,∅,C,n,tn(·) to only direct subterms, which we obtain by changing the case for

defined variables (ST excl
E,C1,C2,n,tn

0
(x) := ∅ when (x : τ = t ∈ E)). By applying ST excl

E,∅,C,n,tn
0 to t as well as

all definitions in the environment, one obtains a finite set of occurrences from which a formula ϕguarded n,tn
C

can be constructed by taking the conjunction of their corresponding formulas (*). This yields a suitable
formula, since no generalized subterm (α, ψ, t′) ∈ ST excl

E,∅,C,n,tn(t) can have a weaker condition ψ than a
term in this construction.
This construction is a generalized version of constructions used by Baelde, Koutsos, and Lallemand

[2] on a case-by-case basis. Thus, ϕn,tnfresh can be seen as the special case ϕguarded n,tn
∅ with no guarding

expressions.

C.1.1. Subcontexts of Guarding Contexts
Consider a context C[v⃗, n tn] = C1[v⃗1, C0[v⃗0, n tn]] and a set of contexts C such that C does not overlap with
any contexts in C. We wish to show that a formula ϕguarded n,tn

C∪{C} (⃗t) is also a valid formula ϕguarded n,tn
C∪{C0} (⃗t).
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As a first step, note that
∀t,ST excl

E,{C},C,n,tn = ST excl
E,{C0},C,n,tn

is easily provable by induction on t. The proof requires unfolding all of C1 in the C[v⃗, n t0] case on the
left, until the C0[v⃗0, n t0] case matches on the right, allowing induction to proceed. All subterms produced
during this will match.
However, we need to prove the following:

∀t,ST excl
E,∅,C∪{C},n,tn = ST excl

E,∅,C∪{C0},n,tn

This can be shown by realizing that the set ST excl
E,C1,C2,n,tn(t) can be defined inductively. It can then be

shown by induction that ∀t,ST excl
E,∅,C∪{C},n,tn ⊆ ST

excl
E,∅,C∪{C0},n,tn and vice versa.

C.1.2. Rewriting to Remove Guards
In Section 3.2 and Appendix B, we give two different versions for CCA2 axioms. In order to show that
these are equivalent, we need a method of rewriting a term in a way that fully removes one of the guarding
expressions and substitutes a variable instead. We thus define a function extrC,n,tn,f (t) that extracts a
guard C:

extrC,n,tn,f (C[v⃗, n t0]) := if t0 = tn then f (extrC,n,tn,f (v⃗)) else C[extrC,n,tn,f (v⃗), n t0]

In all other cases, extrC,n,tn,f (t) is simply applied recursively to all subterms.
For this extraction function, we can show that

∀t, ∀(α⃗, ψ, n t0) ∈ ST excl
E,∅,C,n,tn(extrC,n,tn,f (t)), ∃(α⃗′, ψ′, n t′0) ∈ ST

excl
E,{C},C,n,tn(t),

∀M : E , ∀η ∈ N, ∀ρ ∈ TM,η, J∀α⃗.ψ =⇒ (∃α⃗′.ψ1 ∧ t0 = t′0)Kη,ρM:E = 1

Intuitively, this states that every occurrence s in ST excl
E,∅,C,n,tn(extrC,n,tn,f (t)) is subsumed by an oc-

currence s′ in ST excl
E,{C},C,n,tn(t) in the sense that if property (*) holds for s′, then it must also hold for

s.
This property can be shown by induction on t. In the case of C[v⃗, n t0], note that the subterm introduced

by the case distinction can be ignored, as it is not of the form n t0. Any subterms of v⃗ occur twice after the
extraction, once with additional condition tn = t0 and once with tn 6= t0. In either case, the subsumption
is trivial, as ψ ∧ tn = t0 =⇒ ψ. Finally, the subterms of n t0 which occur in the else case after extraction
are subsumed by the subterms [t0 6= tn]ST excl

E,{C},C,n,tn(n t0) ⊂ ST
excl
E,{C},C,n,tn(C[v⃗, n t0]).

Note, however, that this result only applies to guarding contexts that only apply within direct subterms,
not within the environment. This distinction is necessary since we can not rewrite within the environment.
Luckily, the guarding contexts used in our CCA2 axioms include variables that are bound in the term.
These contexts can thus not appear in the environment, as an occurrence of unbound variables contradicts
the well-formedness of the environment.

C.2. Restricted Reuse
In Section 3.2.1, we saw that we need to restrict the use of random samplings for encryptions in a different
way: Since the encryption is performed by an oracle in the computational model, any random sampling
can only be used to encrypt one message (although the corresponding subterm may occur multiple times).
We will use a similar approach to define this condition, specifying a condition on generalized subterms
which a formula ϕk,tkdem−rand(t) must guarantee. The main difference to the previous construction is that
subterms need to be compared pairwise.
Concretely, ϕk,tkdem−rand(t) may be any formula such that, for every model M : E of Θ, for every η ∈ N

and ρ ∈ TM,η,J[ϕk,tkdem−rand(t)]Kη,ρM:E = 1 =⇒
∀(α⃗, ψ,DEM.Enc(k t0,m, r tr)), (α⃗

′, ψ′,DEM.Enc(k t′0,m
′, r t′r)) ∈ ST E(t),J∀(α⃗ ] α⃗′), ψ ∧ ψ′ =⇒ (t0 6= tk ∧ t′0 6= tk) ∨m = m′ ∨ tr 6= t′rKη,ρM:E = 1 (†)
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Here, we use ] to denote disjoint union, using α-renaming to make the two sets disjoint.
Similar to ϕguarded n,tn

C (·), we can construct a suitable formula ϕk,tkdem−rand(t) by taking only the direct
generalized subterms of t and the environment, then using the conjunction of the formulae (†) for each
pair.

D. Equivalence of CCA2 Axioms
In Section 3.2 and Appendix B, we introduced two versions of each CCA2 axiom, one where the decryption
queries are allowed to appear in the context. Here, we demonstrate that these versions are equivalent on
the example of PKE-IND-CCA2 and PKE-IND-CCA2’.

PKE-IND-CCA2
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C, a⃗,m)] E ,Θ ` [ϕr2,trfresh(C, a⃗,m)]

E ,Θ ` [ϕguarded k,tk
pk(k tk),PKE.Dec(k tk,·)(⃗a,m)] E ,Θ ` [ϕguarded k,tk

pk(k tk),if t=c then ⊥ else PKE.Dec(k tk,t)
(C)]

E ,Θ ` (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

∼ (λ v⃗ c.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))

PKE-IND-CCA2’
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C, a⃗,m)]

E ,Θ ` [ϕr2,trfresh(C, a⃗,m)] E ,Θ ` [ϕguarded k,tk
pk(k tk)

(C)] E ,Θ ` [ϕguarded k,tk
pk(k tk),PKE.Dec(k tk,·)(⃗a,m)]

E ,Θ `

(λ v⃗ c dec.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

(λx.if x =
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

then ⊥ else PKE.Dec(k tk, x))

∼

(λ v⃗ cdec.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))
(λx.if x =

PKE.Enc(pk(k tk), 0
|m|, (r1 tr, r2 tr))

then ⊥ else PKE.Dec(k tk, x))

D.1. PKE-IND-CCA2 =⇒ PKE-IND-CCA2’
This direction is relatively straightforward, as ϕguarded k,tk

pk(k tk)
(C) implies

ϕguarded k,tk
pk(k tk),if t=c then ⊥ else PKE.Dec(k tk,t)

 (λ v⃗ c dec.C) v⃗ c
(λx.if x = PKE.Enc(pk(k tk),m, (r1 tr, r2 tr)) then ⊥

else PKE.Dec(k tk, x))


Thus, we can simply add the explicit decryption oracle to the context by rewriting with β-equivalence,
allowing us to derive PKE-IND-CCA2’ from PKE-IND-CCA2.

D.2. PKE-IND-CCA2’ =⇒ PKE-IND-CCA2
For this direction, we make use of the extraction function defined in Appendix C.1.2.
Note that (λ v⃗ c.C) a⃗ PKE.Enc(pk(k tk),m, (r1 tr, r2 tr)) and

(λ v⃗ c dec.extrif t=c then ⊥ else PKE.Dec(k tk,t),k,tk,dec(C)) a⃗ PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

(λx.if x = PKE.Enc(pk(k tk),m, (r1 tr, r2 tr)) then ⊥ else PKE.Dec(k tk, x))

are β-equivalent (since c = PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))).
Further, the context if t = c then ⊥ else PKE.Dec(k tk, t) contains the variable c, which is not bound in

the environment, and can thus only appear in direct subterms of C. Thus, we know that

ST excl
E,∅,{pk(k tk),if t=c then ⊥ else PKE.Dec(k tk,t)},k,tk(C) = ST

excl
E,{if t=c then ⊥ else PKE.Dec(k tk,t)},{pk(k tk)},k,tk(C)
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This allows us to conclude that all subterms of extrif t=c then ⊥ else PKE.Dec(k tk,t),k,tk,dec(C) satisfy the
required condition for ϕguarded k,tk

pk(k tk),if t=c then ⊥ else PKE.Dec(k tk,t)
(C) according to Appendix C.1.2. Therefore,

we can derive PKE-IND-CCA2 from PKE-IND-CCA2’.

E. KEM/DEM Security Results in CCSA

E.1. PKE-IND-CCA2 from KEM-IND-CCA2 and DEM-IND-OTCCA
In this section, we reproduce a result from Herranz, Hofheinz, and Kiltz [17] for our definitions in CCSA.
We will use the versions of the axioms where the oracle is explicitly given as a term. We want to prove
the following:

PKE-IND-CCA2’
E ,Θ; ∅ `pptm C, a⃗, tk, tr,m E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C, a⃗,m)]

E ,Θ ` [ϕr2,trfresh(C, a⃗,m)] E ,Θ ` [ϕguarded k,tk
pk(k tk)

(C)] E ,Θ ` [ϕguarded k,tk
pk(k tk),PKE.Dec(k tk,·)(⃗a,m)]

E ,Θ `

(λ v⃗ c dec.C) a⃗
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

(λx.if x =
PKE.Enc(pk(k tk),m, (r1 tr, r2 tr))

then ⊥ else PKE.Dec(k tk, x))

∼

(λ v⃗ cdec.C) a⃗
PKE.Enc(pk(k tk), 0

|m|, (r1 tr, r2 tr))
(λx.if x =

PKE.Enc(pk(k tk), 0
|m|, (r1 tr, r2 tr))

then ⊥ else PKE.Dec(k tk, x))

Unfolding the definitions of PKE.Enc and PKE.Dec, we have the following:

E ,Θ `

(λ v⃗ c dec.C) a⃗
let (sk, c1) = KEM.Enc(pk(k tk), r1 tr)
in (c1,DEM.Enc(sk,m, r2 tr)) (λx.if x =
let (sk, c1) = KEM.Enc(pk(k tk), r1 tr)
in (c1,DEM.Enc(sk,m, r2 tr)) then ⊥
else let sk = KEM.Dec(k tk, π1(x))

in DEM.Dec(sk, π2(x)))

∼

(λ v⃗ cdec.C) a⃗
let (sk, c1) = KEM.Enc(pk(k tk), r1 tr)

in (c1,DEM.Enc(sk, 0|m|, r2 tr))
(λx.if x = let (sk, c1) =

KEM.Enc(pk(k tk), r1 tr)
in (c1,DEM.Enc(sk, 0|m|, r2 tr)) then ⊥

else let sk = KEM.Dec(k tk, π1(x))
in DEM.Dec(sk, π2(x)))

As a basic proof idea, the indistinguishability of the two ciphertexts should follow from DEM-IND-
OTCCA. However, we cannot apply this directly, as we are currently not using a fresh random key, but
one obtained from the KEM – if the KEM is insecure and the attacker can gain information about the
key, DEM-IND-OTCCA does not apply. Thus, we first need to apply KEM-IND-CCA2’ to exchange the
key with a fresh random one. However, before we can do so, we first need to ensure that KEM decryption
is properly guarded.
This requires some care, as the PKE-IND-CCA2’ oracle permits queries for ciphertexts where the key

part is the same as in the challenge ciphertext, and only the message part is changed. Before we can apply
KEM-IND-CCA2’, we need to handle such cases without querying the KEM decryption oracle.
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Using β-equivalence and KEM correctness, we can rewrite

(λx.if x = let (sk, c1) = KEM.Enc(pk(k tk), r1 tr) in (c1,DEM.Enc(sk,m, r2 tr)) then ⊥
else let sk = KEM.Dec(k tk, π1(x)) in DEM.Dec(sk, π2(x)))

(E.1)

=
(λx.let (sk, c1) = KEM.Enc(pk(k tk), r1 tr) in if x = (c1,DEM.Enc(sk,m, r2 tr)) then ⊥

else if π1(x) = c1 then let sk′ = KEM.Dec(k tk, c1) in DEM.Dec(sk′, π2(x))
else let sk′ = KEM.Dec(k tk, π1(x)) in DEM.Dec(sk′, π2(x)))

(E.2)

=
(λx.let (sk, c1) = KEM.Enc(pk(k tk), r1 tr) in if x = (c1,DEM.Enc(sk,m, r2 tr)) then ⊥

else if π1(x) = c1 then let sk′ = sk in DEM.Dec(sk′, π2(x))
else let sk′ = KEM.Dec(k tk, π1(x)) in DEM.Dec(sk′, π2(x)))

(E.3)

=
(λx.let (sk, c1) = KEM.Enc(pk(k tk), r1 tr) in if x = (c1,DEM.Enc(sk,m, r2 tr)) then ⊥

else if π1(x) = c1 then DEM.Dec(sk, π2(x)) else let sk′ = if π1(x) = c1 then ⊥
else KEM.Dec(k tk, π1(x)) in DEM.Dec(sk′, π2(x)))

(E.4)

In (E.2), we introduce case distinctions to isolate this case. (E.3) then uses KEM correctness to remove
the decryption query. Finally, in (E.4), we can safely introduce the guard for the KEM decryption oracle.
Since this branch already ensures x 6= c1, no failure can occur.
After rewriting, we now have the following:

E ,Θ `

(λ v⃗ c dec.C) a⃗
let (sk, c1) = KEM.Enc(pk(k tk), r1 tr)

in (c1,DEM.Enc(sk,m, r2 tr))
(λx.let (sk, c1) =

KEM.Enc(pk(k tk), r1 tr)
in if x = (c1,DEM.Enc(sk,m, r2 tr))

then ⊥ else if π1(x) = c1
then DEM.Dec(sk, π2(x))

else let sk′ = if π1(x) = c1 then ⊥
else KEM.Dec(k tk, π1(x))
in DEM.Dec(sk′, π2(x)))

∼

(λ v⃗ cdec.C) a⃗
let (sk, c1) = KEM.Enc(pk(k tk), r1 tr)

in (c1,DEM.Enc(sk, 0|m|, r2 tr))
(λx.let (sk, c1) =

KEM.Enc(pk(k tk), r1 tr)
in if x = (c1,DEM.Enc(sk, 0|m|, r2 tr))

then ⊥ else if π1(x) = c1
then DEM.Dec(sk, π2(x))

else let sk′ = if π1(x) = c1 then ⊥
else KEM.Dec(k tk, π1(x))
in DEM.Dec(sk′, π2(x)))

We can now rewrite this into the shape required for KEM-IND-CCA2’:

E ,Θ `

(λ v⃗ (sk, c1) dec
′.(λ v⃗ c dec.C) a⃗

(c1,DEM.Enc(sk,m, r2 tr))
(λx.if x = (c1,DEM.Enc(sk,m, r2 tr))

then ⊥ else if π1(x) = c1
then DEM.Dec(sk, π2(x))

else DEM.Dec(dec π1(x), π2(x))))
KEM.Enc(pk(k tk), r1 tr)

(λc.if c = π2(KEM.Enc(pk(k tk), r1 tr)
then ⊥ else KEM.Dec(k tk, c))

∼

(λ v⃗ (sk, c1) dec
′.(λ v⃗ c dec.C) a⃗

(c1,DEM.Enc(sk, 0|m|, r2 tr))
(λx.if x = (c1,DEM.Enc(sk, 0|m|, r2 tr))

then ⊥ else if π1(x) = c1
then DEM.Dec(sk, π2(x))

else DEM.Dec(dec π1(x), π2(x))))
KEM.Enc(pk(k tk), r1 tr)

(λc.if c = π2(KEM.Enc(pk(k tk), r1 tr)
then ⊥ else KEM.Dec(k tk, c))

At this point, we can apply transitivity and KEM-IND-CCA2’ to exchange the key produced by
KEM.Enc for a fresh key sk∗ ():

E ,Θ `

(λ v⃗ (sk, c1) dec
′.(λ v⃗ c dec.C) a⃗

(c1,DEM.Enc(sk,m, r2 tr))
(λx.if x = (c1,DEM.Enc(sk,m, r2 tr))

then ⊥ else if π1(x) = c1
then DEM.Dec(sk, π2(x))

else DEM.Dec(dec π1(x), π2(x))))
(sk∗ (), π2 KEM.Enc(pk(k tk), r1 tr))
(λc.if c = π2(KEM.Enc(pk(k tk), r1 tr)

then ⊥ else KEM.Dec(k tk, c))

∼

(λ v⃗ (sk, c1) dec
′.(λ v⃗ c dec.C) a⃗

(c1,DEM.Enc(sk, 0|m|, r2 tr))
(λx.if x = (c1,DEM.Enc(sk, 0|m|, r2 tr))

then ⊥ else if π1(x) = c1
then DEM.Dec(sk, π2(x))

else DEM.Dec(dec π1(x), π2(x))))
(sk∗ (), π2 KEM.Enc(pk(k tk), r1 tr))
(λc.if c = π2(KEM.Enc(pk(k tk), r1 tr)

then ⊥ else KEM.Dec(k tk, c))
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We can now undo the rewriting we performed in order to apply KEM-IND-CCA2’.

E ,Θ `

(λ v⃗ c dec.C) a⃗ let (sk, c1) =
(sk∗ (), π2(KEM.Enc(pk(k tk), r1 tr)))

in (c1,DEM.Enc(sk,m, r2 tr))
(λx.let (sk, c1) =

(sk∗ (), π2(KEM.Enc(pk(k tk), r1 tr)))
in if x = (c1,DEM.Enc(sk,m, r2 tr))

then ⊥ else if π1(x) = c1
then DEM.Dec(sk, π2(x))

else let sk′ = if π1(x) = c1 then ⊥
else KEM.Dec(k tk, π1(x))
in DEM.Dec(sk′, π2(x)))

∼

(λ v⃗ cdec.C) a⃗ let (sk, c1) =
(sk∗ (), π2(KEM.Enc(pk(k tk), r1 tr)))

in (c1,DEM.Enc(sk, 0|m|, r2 tr))
(λx.let (sk, c1) =

(sk∗ (), π2(KEM.Enc(pk(k tk), r1 tr)))
in if x = (c1,DEM.Enc(sk, 0|m|, r2 tr))

then ⊥ else if π1(x) = c1
then DEM.Dec(sk, π2(x))

else let sk′ = if π1(x) = c1 then ⊥
else KEM.Dec(k tk, π1(x))
in DEM.Dec(sk′, π2(x)))

We now need to guard the DEM decryption in order to apply DEM-IND-OTCCA’. Note that we only need
to guard the first occurrence, as the second occurrence uses the key obtained from KEM.Dec(k tk, π1(x)),
which is independent of sk∗ (). This can be done by rewriting using β-equivalence, as this branch already
ensures π2(x) 6= DEM.Enc(sk∗ (),m, r2 tr). We thus obtain the following:

E ,Θ `

(λ v⃗ c dec.C) a⃗ let (sk, c1) =
(sk∗ (), π2(KEM.Enc(pk(k tk), r1 tr)))

in (c1,DEM.Enc(sk,m, r2 tr))
(λx.let (sk, c1) =

(sk∗ (), π2(KEM.Enc(pk(k tk), r1 tr)))
in if x = (c1,DEM.Enc(sk,m, r2 tr))

then ⊥ else if π1(x) = c1
then if π2(x) = DEM.Enc(sk∗ (),m, r2 tr)
then ⊥ else DEM.Dec(sk∗ (), π2(x)))
else let sk′ = if π1(x) = c1 then ⊥

else KEM.Dec(k tk, π1(x))
in DEM.Dec(sk′, π2(x)))

∼

(λ v⃗ cdec.C) a⃗ let (sk, c1) =
(sk∗ (), π2(KEM.Enc(pk(k tk), r1 tr)))

in (c1,DEM.Enc(sk, 0|m|, r2 tr))
(λx.let (sk, c1) =

(sk∗ (), π2(KEM.Enc(pk(k tk), r1 tr)))
in if x = (c1,DEM.Enc(sk, 0|m|, r2 tr))
then ⊥ else if π1(x) = c1 then if π2(x) =
DEM.Enc(sk∗ (), 0|m|, r2 tr) then ⊥

else DEM.Dec(sk∗ (), π2(x))
else let sk′ = if π1(x) = c1 then ⊥

else KEM.Dec(k tk, π1(x))
in DEM.Dec(sk′, π2(x)))

With this guard in place, we can rewrite both sides into the shape required for DEM-IND-OTCCA’:

E ,Θ `

(λ v⃗ c2 dec.(λ v⃗ c dec.C) a⃗
let c1 = π2(KEM.Enc(pk(k tk), r1 tr))

in (c1, c2)
(λx.let c1 = π2(KEM.Enc(pk(k tk), r1 tr))
in if x = (c1, c2) then ⊥ else if π1(x) = c1

then dec(π2(x))
else DEM.Dec(if π1(x) = c1 then ⊥
else KEM.Dec(k tk, π1(x)), π2(x))))

DEM.Enc(sk∗ (),m, r2 tr)
(λx.if x = DEM.Enc(sk∗(),m, r2 tr)

then ⊥ else DEM.Dec(sk∗ (), x)

∼

(λ v⃗ c2 dec.(λ v⃗ c dec.C) a⃗
let c1 = π2(KEM.Enc(pk(k tk), r1 tr))

in (c1, c2)
(λx.let c1 = π2(KEM.Enc(pk(k tk), r1 tr))
in if x = (c1, c2) then ⊥ else if π1(x) = c1

then dec(π2(x))
else DEM.Dec(if π1(x) = c1 then ⊥
else KEM.Dec(k tk, π1(x)), π2(x))))

DEM.Enc(sk∗ (), 0|m|, r2 tr)
(λx.if x = DEM.Enc(sk∗(), 0|m|, r2 tr)

then ⊥ else DEM.Dec(sk∗ (), x)

Now, the proof conludes using DEM-IND-OTCCA’.
However, one detail we have thus far neglected are the side conditions ϕguarded k,tk

pk(k tk),KEM.Dec(k tk,·)(C) and
ϕ
guarded sk∗,()
DEM.Dec(sk∗ (),·)(⃗a,m) and ϕsk

∗,()
dem−rand(C, a⃗,m). The latter two are easy to resolve, as the key sk∗ () was

chosen to be entirely fresh in C, a⃗ and m, so we only need to check the occurrences we have introduced
in the proof. For the former, however, we need to prove that any formula ϕguarded k,tk

pk(k tk),PKE.Dec(k tk),·)(C) is
also a valid formula ϕguarded k,tk

pk(k tk),KEM.Dec(k tk),·). As we show in Appendix C.1.1, this is indeed the case, since
KEM.Dec(k tk, ·) is a subcontext of PKE.Dec(k tk, ·).
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E.2. PKE-NM-CCA1 from KEM-PNM-CCA1 and DEM-NM-OT
We want to prove the following:

PKE-NM-CCA1
E ,Θ; ∅ `pptm C,C ′, a⃗, a⃗′, tk, tr,m

E ,Θ ` const(tr) E ,Θ ` const(tk) E ,Θ ` [ϕr1,trfresh(C,C
′, a⃗, a⃗′,m)]

E ,Θ ` [ϕr2,trfresh(C,C
′, a⃗, a⃗′,m)] E ,Θ ` [ϕguarded k,tk

pk(k tk)
(C,C ′)] E ,Θ ` [ϕguarded k,tk

pk(k tk),PKE.Dec(k tk,·)(⃗a, a⃗
′,m)]

E ,Θ `

let c = PKE.Enc(k tk,m, (r1 tr, r2 tr))
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else PKE.Dec(k tk, x))

∼
let c = PKE.Enc(k tk, 0

|m|, (r1 tr, r2 tr))
in (λ v⃗ c m M.C ′) a⃗′ c m

(let x = (λ v⃗ c.C) a⃗ c in if x = c then ⊥
else PKE.Dec(k tk, x))

Unfolding the definitions of PKE.Enc and PKE.Dec, we have the following:

let (c1, c2) = let (sk, c1) =
KEM.Enc((pk(k tk), r1 tr)

in (c1,DEM.Enc(sk,m, r2 tr)) in C
′ a⃗′

(c1, c2) m (let (x1, x2) = C a⃗ (c1, c2)
in if (x1, x2) = (c1, c2) then ⊥
else let sk = KEM.Dec(k tk, x1)

in DEM.Dec(sk, x2))

∼

let (c1, c2) = let (sk, c1) =
KEM.Enc((pk(k tk), r1 tr)

in (c1,DEM.Enc(sk, 0|m|, r2 tr)) in C
′ a⃗′

(c1, c2) m (let (x1, x2) = C a⃗ (c1, c2)
in if (x1, x2) = (c1, c2) then ⊥
else let sk = KEM.Dec(k tk, x1)

in DEM.Dec(sk, x2))

Similar to the previous proof, we first need to guard the KEM decryption. This can be achieved using
β-equivalence and KEM correctness, by introducing special handling for ciphertexts (x1, x2) where x1 = c1.

let (sk, c1) = KEM.Enc((pk(k tk), r1 tr);
c2 = DEM.Enc(sk,m, r2 tr)) in C

′ a⃗′

(c1, c2) m (let (x1, x2) = C a⃗ (c1, c2)
in if (x1, x2) = (c1, c2) then ⊥
else let sk′ = if x1 = c1 then sk

else if x1 = c1 then ⊥
else KEM.Dec(k tk, x1)
in DEM.Dec(sk′, x2))

∼

let (sk, c1) = KEM.Enc((pk(k tk), r1 tr);
c2 = DEM.Enc(sk, 0|m|, r2 tr)) in C

′ a⃗′

(c1, c2) m (let (x1, x2) = C a⃗ (c1, c2)
in if (x1, x2) = (c1, c2) then ⊥
else let sk′ = if x1 = c1 then sk

else if x1 = c1 then ⊥
else KEM.Dec(k tk, x1)
in DEM.Dec(sk′, x2))

We can now apply KEM-PNM-CCA1 to replace the symmetric key with a fresh one sk∗ () (omitting a
step of using β-equivalence to obtain the proper structure of the term).

let c1 = π2KEM.Enc((pk(k tk), r1 tr);
c2 = DEM.Enc(sk∗ (),m, r2 tr)) in C

′ a⃗′

(c1, c2) m (let (x1, x2) = C a⃗ (c1, c2)
in if (x1, x2) = (c1, c2) then ⊥

else let sk′ = if x1 = c1 then sk∗ ()
else if x1 = c1 then ⊥
else KEM.Dec(k tk, x1)
in DEM.Dec(sk′, x2))

∼

let c1 = π2KEM.Enc((pk(k tk), r1 tr);
c2 = DEM.Enc(sk∗ (), 0|m|, r2 tr)) in C

′

a⃗′ (c1, c2) m (let (x1, x2) = C a⃗ (c1, c2)
in if (x1, x2) = (c1, c2) then ⊥

else let sk′ = if x1 = c1 then sk∗ ()
else if x1 = c1 then ⊥
else KEM.Dec(k tk, x1)
in DEM.Dec(sk′, x2))

Now, we need to introduce a guard for DEM decryption. Again, this is possible using β-equivalence, since
the existing branches already enforce this condition.

let c1 = π2KEM.Enc((pk(k tk), r1 tr);
c2 = DEM.Enc(sk∗ (),m, r2 tr)) in C

′ a⃗′

(c1, c2) m (let (x1, x2) = C a⃗ (c1, c2)
in if (x1, x2) = (c1, c2) then ⊥

else if x1 = c1 then if x2 = c2 then ⊥
else DEM.Dec(sk∗ (), x2)

else DEM.Dec(KEM.Dec(k tk, x1), x2))

∼

let c1 = π2KEM.Enc((pk(k tk), r1 tr);
c2 = DEM.Enc(sk∗ (), 0|m|, r2 tr)) in C

′

a⃗′ (c1, c2) m (let (x1, x2) = C a⃗ (c1, c2)
in if (x1, x2) = (c1, c2) then ⊥

else if x1 = c1 then if x2 = c2 then ⊥
else DEM.Dec(sk∗ (), x2)

else DEM.Dec(KEM.Dec(k tk, x1), x2))
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The proof now concludes using DEM-NM-OT. As in the previous proof, the side conditions for DEM-
NM-OT are easy to verify since sk∗ () was chosen entirely fresh. The side conditions for KEM-PNM-CCA1
follow from the fact that any formula ϕguarded k,tk

pk(k tk),PKE.Dec(k tk),·)(C) is also a valid formula ϕguarded k,tk
pk(k tk),KEM.Dec(k tk),·),

as shown in the previous proof.

F. Soundness of KEM/DEM Axioms

F.1. KEM-IND-CCA2
If KEM is not secure in the sense of our axiom, it is not secure in the sense of the IND-CCA2 game.
Assume an adversary A against the indistinguishability in the axiom. We construct an adversary A′

against the IND-CCA2 game such that the advantage of A′ is exactly the advantage of A.
A′ consists of two phases. The first phase, A1, is given the public key pk (k tk) and has access to a

decryption oracle. Its purpose is to compute J⃗aKη,ρM:E .
The second phase, A2, is given the result of the first phase, the public key, a symmetric key and the

ciphertext. It first computes the result of the term and then simulates A on it.
Both phases rely on a recursive procedure Iσ which, given a term u with free variables in E ∪ α⃗ s.t.
E ,Θ; α⃗ `pptm u and a semantic assignment σ of domain α⃗, computes JuKη,ρM[α⃗ 7→σ(α)]:(E,α⃗). For the most part,
the procedures proceeds in the obvious way (following the derivation of E ,Θ; α⃗ `pptm u, similar to the one
described by Baelde, Koutsos, and Lallemand [2]), except for terms which need to be replaced with oracle
queries. Note that defined variables in E must be adversary-computable, since E ,Θ; α⃗ `pptm u is derivable.
The following cases need to be handled differently:

• Random sampling case: When u is of the form r t, compute Iσ(t) and Iσ(tr). If they are equal, fail,
otherwise sample as normal.

• Key case: When u is of the form k t, compute Iσ(t) and Iσ(tk). If they are equal, fail, otherwise
sample the tape for k t as normal.

• Public key case: When u is of the form pk (k t), compute Iσ(t) and Iσ(tk). If they are equal, use the
public key that was provided as the input. Otherwise, proceed with calculating the key as normal.

• Decryption case: When u is of the form KEM.Dec c (k t), compute the indices Iσ(t) and Iσ(tk). If
they are equal, query the decryption oracle (note that in A2, this can fail). Otherwise, proceed as
normal.

Note that this construction allows abstractions which require oracle queries to evaluate. This is not a
problem, since

• within a phase, the oracle is available whenever the abstraction is called

• a⃗ is of order 0, so the final result of A1 can not contain any abstractions which would need to be
evaluated in A2

• if C ′ is an abstraction, it might be called by A. However, this can be simulated by A2 using the
oracle.

The construction thus has two failure conditions: It will fail when trying to compute r tr or k tk or
when attempting to decrypt the given ciphertext in A2.
However, the conditions of the axioms enforce that

• Random sampling case: r tr may not occur in the term at all and will thus not be computed.

• Key case: k tk may not appear in the term except under pk or KEM.Dec, in which case the other
exceptions make sure that k tk is not computed.
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• Decryption case: In the second phase, decryption fails when attempting to decrypt the original
ciphertext. According to our conditions, any occurrence of KEM.Dec in the second phase must be
under a guard which enforces that no query is made for the original ciphertext, so no failures can
occur.

The axiom requires E ,Θ; ∅ `pptm C, a⃗, tr, tk, which enforces that these procedures can compute the
evaluation of these terms in polynomial time. It therefore follows that A′ is an adversary against the
IND-CCA2 game whose advantage is exactly the advantage of A against the indistinguishability.
If KEM is secure in the sense of the IND-CCA2 game, it follows that this advantage must be negligible;

thus, KEM is also secure in the sense of our axiom.

F.2. KEM-sNM-CCA1
If KEM is not secure in the sense of our axiom, it is not secure in the sense of the sNM-CCA1 game.
Assume an adversary A against the indistinguishability in the axiom. We construct an adversary A′

against the sNM-CCA1 experiment such that the advantage of A′ is exactly that of A.
A′ has two phases, A1 and A2. A1 computes a⃗ and a⃗′ using the decryption oracle if needed. A2 is

given the result of the first phase, the ciphertext and the ordered pair of sk and sk∗ and uses them to
compute J(λv⃗ c p.C) a⃗ c (order sk sk∗)Kη,ρM:E as well as a relation that, given sk or sk∗ and the decryption of
the previous term, computes the result of C ′. Note that all other inputs to C ′ are available in the second
phase and can therefore be “hard-coded”.
A1 proceeds according to the same procedure Iσ(u) as in the previous section. A2 requires some changes,

since it does not have access to a decryption oracle. Therefore, the decryption case needs to be changed
such that if the key index is equal to tk, the procedure will just fail. Since the conditions of the axiom do
not allow decryption with k tk in C and C ′, such a failure will not occur.
As in the previous proof, abstractions which require oracle queries to evaluate are allowed in A1. How-

ever, since both a⃗ and a⃗′ must be of order 0, the final result passed to A2 can not contain any abstractions.
By assumption of the axiom, E ,Θ; ∅ `pptm C ′, C, a⃗′, a⃗, tr, tk, so the evaluations of these terms are all

computable in polynomial time with these procedures. Therefore, A′ requires only polynomial time.
It therefore follows that A′’s advantage is negligible; so A’s advantage is also negligible.

G. PNM, CNM, sNM and Modified sNM-CCA2

G.1. Equivalence of PNM, CNM and sNM
G.1.1. PNM implies CNM
This proof is given by Nagao, Manabe, and Okamoto [20].
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G.1.2. CNM implies sNM
We have, for any adversary A,

AdvsNM-ATK
A =Pr[ExptsNM-ATK

A = 1]− Pr[Ẽxpt
sNM-ATK
A = 1]

=Pr[ExptsNM-ATK
A = 1]− Pr[Ẽxpt

CNM-ATK
A = 1]

+ Pr[Ẽxpt
CNM-ATK
A = 1]− Pr[Ẽxpt

sNM-ATK
A = 1]

=Pr[ExptCNM-ATK
A = 1]− Pr[Ẽxpt

CNM-ATK
A = 1]

+ Pr[Ẽxpt
CNM-ATK
A = 1]− Pr[Ẽxpt

sNM-ATK
A = 1]

=AdvCNM-ATK
A + Pr[Ẽxpt

CNM-ATK
A = 1]− Pr[Ẽxpt

sNM-ATK
A = 1]

Note that the experiments ExptsNM-ATK
A and ExptCNM-ATK

A are the same.
We now define another adversary A′:

A′O1
1 (pk) :=AO1

1 (pk)

A′O2
2 (st,X,C∗) :=(Rel,C)← AO2

2 (st,X,C∗)

(Rel′,C)← λK∗ K.
(X1, X2)← X

if K∗ = X1 then 1−Rel(X2,K)

else 1−Rel(X1,K)

return (Rel′,C)

This adversary only changes the relation used. Given either the real or a fresh key, it calls A’s relation on
the other key and then negates the result.
This is helpful, as it relates

Pr[Ẽxpt
sNM-ATK
A = 1] = Pr[ExptsNM-ATK

A′ = 0]

= 1− Pr[ExptsNM-ATK
A′ = 1]

= 1− Pr[ExptCNM-ATK
A′ = 1]

Further,

Pr[Ẽxpt
CNM-ATK
A = 1] = Pr[Ẽxpt

CNM-ATK
A′ = 0]

= 1− Pr[Ẽxpt
CNM-ATK
A′ = 1]

Thus, we have

AdvsNM
A = AdvCNM-ATK

A + Pr[Ẽxpt
CNM-ATK
A = 1]− Pr[Ẽxpt

sNM-ATK
A = 1]

= AdvCNM-ATK
A + 1− (Pr[Ẽxpt

CNM-ATK
A′ = 1])− (1− Pr[ExptCNM-ATK

A′ = 1])

= AdvCNM-ATK
A + Pr[ExptCNM-ATK

A′ = 1]− Pr[Ẽxpt
CNM-ATK
A′ = 1]

= AdvCNM-ATK
A + AdvCNM-ATK

A′

If the key encapsulation mechanism is CNM-ATK secure, AdvCNM-ATK
B (η) is negligible in η for any

adversary B and thus in particular for A and A′. It therefore follows that AdvsNM-ATK
A (η) is also negligible

in η.
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G.1.3. sNM implies PNM
Assume an adversary A such that AdvPNM-ATK

A (η) is not negligible in η, i.e. Pr[ExptPNM-ATK
A (η) = 1]− 1

2 >
µ(η) for some non-negligible function µ. We construct a sNM-adversary B as follows:

BO1
1 (pk) := AO1

1 (pk)

BO2
2 (C∗, X, st) :=X1, X2 ← X X is a pair of two keys in unknown order

st1, C1 ← AO2
2 (X1, st, C

∗)

st2, C2 ← AO2
2 (X2, st, C

∗)

C← C1 ++C2

R← λKb K.
K1,K2 ← K Splitting can be done based on the length of C1

if Kb = X1 then 1−A3(st1,K1)

else 1−A3(st2,K2)

return (R,C)

We have

AdvsNM-ATK
B = Pr[ExptsNM-ATK

B = 1]− Pr[Ẽxpt
sNM-ATK
B = 1]

= Pr[g = 0|b = 0]− Pr[g = 0|b = 1]

= Pr[g = 0|b = 0]− (1− Pr[g = 1|b = 1])

= Pr[g = 0|b = 0] + Pr[g = 1|b = 1]− 1

=
Pr[g = 0 ∧ b = 0]

Pr[b = 0]
+

Pr[g = 1 ∧ b = 1]

Pr[b = 1]
− 1

= 2(Pr[g = 0 ∧ b = 0] + Pr[g = 1 + b = 1])− 1

= 2Pr[g = b]− 1

≥ 1 + 2µ(η)− 1 = 2µ(η)

where g and b refer to the variables in the PNM-ATK experiment. The first line is justified by the fact
that from the point of view of A, the two experiments correspond exactly to the options in the PNM-ATK
game.

sNM implies PNM (without rewinding)

The previous proof involves duplicating A’s internal state, and executing the same attack phase multiple
times. This is called rewinding (since the attacker is reset to some previous point in time, and run again
on different input). If possible, it is often avoided, since proof techniques including rewinding are not
applicable to quantum adversaries. Thus, we present a modified version of the proof:
Assume an adversary A such that AdvPNM-ATK

A (η) is not negligible in η, i.e. Pr[ExptPNM-ATK
A (η) =

1]− 1
2 > µ(η) for some non-negligible function µ. We construct a sNM-adversary B as follows:

BO1
1 (pk) := AO1

1 (pk)
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BO2
2 (C∗, X, st) :=X1, X2 ← X X is a pair of two keys in unknown order

b′ ←$ {0, 1}
st′,C← AO2

2 (Xb′ , st, C
∗)

R← λKb K.
if Kb = Xb′ then 1−A3(st,K)

else 0

return (R,C)

Note that we could also construct the adversary by negating the answer instead of just returning 0 if
the guessed key is not the correct one. This attacker’s advantage would be better by a factor of 2, and we
will use this construction in the next proof (Appendix G.1.3).
We have

AdvsNM-ATK
B = Pr[ExptsNM-ATK

B = 1]− Pr[Ẽxpt
sNM-ATK
B = 1]

= (Pr[ExptsNM-ATK
B = 1|Kb = Xb′ ] + Pr[ExptsNM-ATK

B = 1|Kb 6= Xb′ ])

− (Pr[Ẽxpt
sNM-ATK
B = 1|Kb = Xb′ ] + Pr[Ẽxpt

sNM-ATK
B = 1|Kb 6= Xb′ ])

=
1

2
· Pr[g = 0|b = 0]− 1

2
· Pr[g = 0|b = 1]

=
1

2
· (Pr[g = 0|b = 0]− (1− Pr[g = 1|b = 1]))

=
1

2
· (Pr[g = 0|b = 0] + Pr[g = 1|b = 1]− 1)

=
1

2
· (Pr[g = 0 ∧ b = 0]

Pr[b = 0]
+

Pr[g = 1 ∧ b = 1]

Pr[b = 1]
− 1)

= (Pr[g = 0 ∧ b = 0] + Pr[g = 1 + b = 1])− 1

2

= Pr[g = b]− 1

2

≥ 1

2
+ µ(η)− 1

2
= µ(η)

where g and b refer to the variables in the PNM-ATK experiment. The first line is justified by the fact
that from the point of view of A, the two experiments correspond exactly to the options in the PNM-ATK
game.

Modified sNM-CCA2 We define a modified version of sNM, in which the adversary-defined relation also
has access to the decryption oracle.
sNM′-CCA2 =⇒ sNM-CCA2 is trivial: Any adversary against sNM-CCA2 is also an adversary against

sNM′-CCA2, the relation just does not make use of the oracle.
On the other hand, we have sNM-CCA2 =⇒ sNM′-CCA2: Given an sNM′-CCA2 adversary A, we

construct an adversary A′ against sNM-CCA2 as follows.

A′O1
1 (pk) :=AO1

1 (pk)

A′O2
2 (C∗, X, St) :=(R,C)← AO2

2 (C∗, X, St)

K← O2(C)
r ← RO2(π1X,K)

R′(Kb,−)← C∗ ∈ C?0 : (Kb = X1?r : ¬r)
return (R′, [])
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Note that A′ does not make use of decryption via C at all, since the decryption oracle can handle the
same queries. Note also that R is always 0 if C contains the ciphertext, matching the check in ExptsNM-ATK.

AdvsNM′−ATK
A′ =Pr[ExptsNM′-CCA2

A′ = 1]− Pr[Ẽxpt
sNM′-ATK
A′ = 1]

=
1

2
(Pr[ExptsNM-ATK

A = 1]− Pr[Ẽxpt
sNM-ATK
A = 1])

+
1

2
(Pr[Ẽxpt

sNM-ATK
A = 0]− Pr[ExptsNM-ATK

A = 0])

=
1

2
AdvsNM-ATK

A +
1

2
((1− Pr[Ẽxpt

sNM-ATK
A = 1])

− (1− Pr[ExptsNM-ATK
A = 1]))

=
1

2
AdvsNM-ATK

A +
1

2
(Pr[ExptsNM-ATK

A = 1]− Pr[Ẽxpt
sNM-ATK
A = 1])

=AdvsNM-ATK
A

The above follows from the fact that ifKb happens to be the first key inX, then the experiments correspond
exactly to the sNM experiments. In the other case, the result of the experiment is negated.
The factor 1

2 comes from the order of X being chosen at random, although any other distribution would
work as well.

H. PKE-based Oblivious Transfer
H.1. Insufficient Characterization of Full-Domain Encryption
We first attempted to state the full-domain assumption as follows:

PKE-FD

E ; Θ ` ∀̃((m, i) : τmsg × τindex). ∃̃((m′, s′) : τmsg × τmsg).

[PKE.Enc(pk(kS i),m′, s′) = m]∧̃[ϕkS ,i
fresh(m) =⇒ ϕkS ,i

fresh(m
′)]

This states that for every message m and secret key kS i, there is a message m′ that can be encrypted
with pk(kS i) to produce the ciphertext m. Importantly, if m does not depend on k in any way, then
neither does m′.
However, it is not quite sufficient, as there could by encryption schemes where a uniform distribution

of ciphertexts does not yield a uniform distribution of plaintexts. As a most extreme example, consider
an encryption scheme where all but one message m are effectively encrypted without randomization (i.e.
they always produce the same ciphertext), but encryption of m makes full use of the available randomness
and can produce a vast number of different ciphertexts. Such a scheme could still be NM-CPA secure (as
required for the protocol) as long as m is different for each key, and thus not known to the attacker.
However, such a scheme would not yield receiver privacy when used in this protocol, as the receiver

would have a low probability of choosing message m to encrypt, but the ciphertext XOR ma i and mb i
produces a ciphertext of m with high likelihood. To the sender, which knows the secret key, these are
distinguishable.

H.2. Derived Property: Indistinguishability of Modified Ciphertext
from Random Sampling

From PKE-IND$ and PKE-NM-CPA, we can derive the following property, which states that an attacker
modifying the ciphertext using XOR can not distinguish between the decryption of the result and a
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randomly sampled message:

PKE-XOR-CPA
E ,Θ; ∅ `pptm C,C ′,m, tr k /∈pk u⃗, C, C ′,m, tr, a E ; Θ ` [ϕ

n,()
fresh(u⃗, C, C

′,m, tr, a)] E ; Θ ` [a 6= 0]

E ; Θ ` u⃗, C[let c← PKE.Enc(pk(k tk),m, r tr);
x← c⊕ a in c,PKE.Dec(k tk, x)]

∼ u⃗, C[let c← PKE.Enc(pk(k tk),m, r tr);
x← c⊕ a in c, n ()]

We prove this property by reducing to PKE-IND$ and PKE-NM-CPA. Assume an adversary A against
PKE-XOR-CPA for some message m. If A has a non-negligible advantage, then PKE.Dec(k tk, PKE.Enc
(pk(k tk), m, r tr) ⊕ a) must have a non-uniform distribution (and be distinguishable from a uniform
distribution). Note, however, that

⋃
m{PKE.Dec(k tk,PKE.Enc(pk(k),m, r) ⊕ a)|for all values of k, r}

is a partition of the set of all possible ciphertexts. This leaves two options: either, the distribution of
PKE.Dec(k tk,PKE.Enc(pk(k tk),m ⊕ a, r tr) ⊕ a) is equal (or at least indistinguishable) for all m, or
there are two messages m and m′ such that the corresponding distributions are distinguishable.
In the first case, this means that there is an attacker with non-negligible advantage against PKE-IND$,

since the distributions of ciphertexts obtained via encryption is not uniform. In the second case, however,
there is an attacker with non-negligible advantage against PKE-NM-CPA, since it is possible to distinguish
between the encryptions of m and m′ by querying the decryption oracle for c⊕ a (where c is the challenge
ciphertext).
Unfortunately, we have not been able to do this proof in CCSA, since CCSA (currently) offers no way

of reasoning about the probability distributions of terms other than names.

H.3. Receiver Privacy
The abstract statement we wish to prove is the following:

E ,Θ ` S.init(r), π1(R.req(r
′, 0, π1(S.init(r)))) ∼ S.init(r), π1(R.req(r

′, 1, π1(S.init(r))))

Substituting the definitions and simplifying, we get

E ,Θ ` ma i,mb i, pk(kS i),
PKE.Enc(pk(kS i), sj , rj)⊕ma i

∼ ma i,mb i, pk(kS i),
PKE.Enc(pk(kS i), sj , rj)⊕mb i

Using PKE-IND$ as defined above, we can treat the encryption as a random sampling (denoted by the
fresh name n ()):

E ,Θ ` ma i,mb i, pk(kS i), n ()⊕ma i ∼ ma i,mb i, pk(kS i), n ()⊕mb i

Now, we again use the fact that the result of exclusive or is random when one of the operands is.

E ,Θ ` ma i,mb i, pk(kS i), n′ () ∼ ma i,mb i, pk(kS i), n′′ ()

The proof concludes using the indistinguishability of fresh names.
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