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General Context
Modern processors employ a performance optimization known as speculative execution, in which the processor
may predict the outcome of branches or indirect jumps in order to begin executing the following instructions earlier.
In case the prediction is incorrect, all incorrectly executed instructions are rolled back so that they do not affect the
final result. However, speculatively executed instructions still leave traces in the microarchitectural state (e.g. via
caches) that an attacker can exploit to exfiltrate secrets, leading to the well-known class of Spectre attacks.

As speculative execution vulnerabilities are fundamentally a weakness of the hardware design, intuitively, it might
seem most promising to attempt to mitigate them in hardware. However, hardware mitigations are prohibitively
expensive, and can not protect currently existing hardware. Therefore, it is clear that software defenses against
speculative execution attacks are needed.

With no other considerations, complete software mitigations against Spectre attacks are easy: Serializing instruc-
tions such as the x86 lfence instruction, which does not begin executing until all previous instructions have
completed and prevents later instructions from executing until it has completed [1], can fully prevent speculative
execution. Therefore, attacks can be prevented by simply inserting serializing instructions after every branch¹. This
is, for example, implemented in the Intel C compiler [1], [3]. However, fully preventing speculative execution comes
at a huge performance cost [4]. Thus, much work has been done on mitigations with lower overhead, whether via
binary-level analysis (e.g. Spectector [5]) or in compilers [6], [7]. However, most defenses are either still prohibitively
expensive (e.g. Ultimate SLH [8]) or lack formal analysis (e.g. LLVM-SLH [6]). Targeted, efficient mitigations with
formal security guarantees are currently limited to the domain of cryptography, such as Selective SLH [7] for Jasmin
[9]. However, even in those cases, proofs are usually only done on paper and not mechanized.

Further, most mitigations so far only target Spectre-PHT attacks (where the outcome of a branch is mispredicted),
while ignoring other classes of Spectre attacks.

Research Problem
This report focuses on mechanized security proofs for compiler-based mitigations against speculative side-channel
attacks. The aim is to investigate two aspects: One question is whether existing compiler mitigations for restricted
classes of programs can be extended to handle more general classes of programs, how the security proofs need
to be adjusted in this case, and how they can be mechanized in proof assistants. The other question concerns the
models of speculative execution underpinning such security proofs, what relationships can be established between
different models, and how they can be formalized and mechanized. Of particular interest here are relationships
between abstract models and models that are closer to hardware.

Contribution
I present two main contributions.

For the first question, I present how FlexSLH, a new compiler-based Spectre mitigation which generalizes previous
mitigations, can be proven to ensure relative security for all programs. The proof relies on generalizing the result

¹Or other source of speculative execution, see C. Canella et al. [2] for an overview.
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of a static information-flow analysis to a typing-like well-labeledness property, which, unlike the information-flow
analysis result, is preserved during execution.

Regarding models of speculative execution, I present both a mechanization of a proof by G. Barthe et al. [10]
establishing an equivalence between directive-based models (in which the attacker has explicit control over branch
prediction at runtime) with and without rollbacks, as well as a new result that observational equivalence in
the directive-based model implies observational equivalence in an always-mispredict model (as introduced by M.
Guarnieri et al. [5] for Spectector). The latter result in particular also highlights some restrictions and a potential
flaw which can easily be missed² when relying purely on more abstract models of speculative execution.

Arguments Supporting Validity
A core aspect of this work is to increase the trustworthiness of security proofs by using fully mechanized proofs
instead of relying on paper proofs. Therefore, all work presented here has been formalized in the Rocq proof
assistant³.

The full Rocq developments can be found at https://github.com/secure-compilation/fslh-rocq for Section  3 and
https://github.com/secure-compilation/comparing_speculative_semantics_rocq for Section 4. Please note, however,
that some minor lemmas concerning maps are admitted in the published versions, as they are given (in this exact
form) as exercises in the upcoming Security Foundations book [12] (and lectures based on it).

Summary and Future Work
I present formal, mechanized proofs of the relative security of FSLH on arbitrary (as opposed to only well-typed)
programs, as well as the relationships between directive-based semantics with and without rollbacks and Spectector-
style always-mispredict semantics. Both leave much potential for future work.

Regarding FSLH, the mitigation currently only exists for a small toy language, and does not yet have a proper real-
world implementation. In fact, core questions remain open, such as at what point during compilation information-
flow analysis should be performed so that the results remain valid. This is particularly challenging since certain
optimizations in LLVM are known to break cryptographic constant-time code [13], [14], [15], e.g. by inserting
unintended branches. While a full security proof for a real-world compiler may not be tractable, it may be of interest
to develop security proofs of FlexSLH for (toy) languages with more advanced features, such as dynamic allocation,
to ensure that it still ensures relative security in the presence of such features.

Further, FSLH so far only targets Spectre-PHT attacks, and does not mitigate other speculative execution vulner-
abilities. While mitigations for other variants will be conceptually different, our long-term goal is to develop a
mechanized security proof of a combined mitigation against all known speculative execution attacks.

Regarding different speculation models, this work is only a first step in bridging a large gap between the abstract
models that are suited for formal proofs, and e.g. hardware-software-contracts [16], which accurately describe the
hardware in question. Nonetheless, as we already uncovered some potential pitfalls when using abstract models, a
first step will be to investigate whether prior work handles such cases correctly.

Notes and Acknowledgments
Section 3 is mostly adapted from Section 7 of the FSLH paper, presented at CSF 2025 [11], which received a distin-
guished paper award. My main contribution to this paper is in the proof of relative security for FvSLH∀, in particular
for the ideal semantics (as my coauthors had already completed the proof of backwards compiler correctness),
although I was also heavily involved in editing the final version of the paper.

As a consequence, this report will also use the same setting and notations as that paper (where applicable).

²For example in our own published work on FSLH [11], although it should only require adjustments to proof details and is not a
flaw with the mitigation itself.

³Previously known as Coq. https://rocq-prover.org/
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1 Setting
1.1 AWhile
For this report, we will use a simple toy language called AWhile, a variant of the While language [17] extended
with arrays and branchless conditionals, which is also used in the FSLH paper [11] and the upcoming Security
Foundations book [12].

𝑒 ∈ 𝑎𝑒𝑥𝑝 ⩴ 𝑛 ∈ ℕ 𝑛𝑢𝑚𝑏𝑒𝑟
| 𝚡 ∈ 𝒱 𝑠𝑐𝑎𝑙𝑎𝑟 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
| 𝑜𝑝ℕ(𝑒, …, 𝑒) 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟
| 𝑏 ? 𝑒 : 𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡-𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙

𝑏 ∈ 𝑏𝑒𝑥𝑝 ⩴ 𝕋 | 𝔽 𝑏𝑜𝑜𝑙𝑒𝑎𝑛
| 𝑐𝑚𝑝(𝑒, 𝑒) 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛
| 𝑜𝑝𝔹(𝑏, …, 𝑏) 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟

𝑐 ∈ 𝑐𝑜𝑚 ⩴ 𝚜𝚔𝚒𝚙 𝑑𝑜 𝑛𝑜𝑡ℎ𝑖𝑛𝑔
| 𝚇 ≔ 𝑒 𝑎𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡
| 𝑐; 𝑐 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒
| 𝚒𝚏 𝑏 𝚝𝚑𝚎𝚗 𝑐 𝚎𝚕𝚜𝚎 𝑐 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙
| 𝚠𝚑𝚒𝚕𝚎 𝑏 𝚍𝚘 𝑐 𝑙𝑜𝑜𝑝
| 𝚇 ← 𝚊[𝑒] 𝑟𝑒𝑎𝑑 𝑓𝑟𝑜𝑚 𝑎𝑟𝑟𝑎𝑦
| 𝚊[𝑒] ← 𝑒 𝑤𝑟𝑖𝑡𝑒 𝑡𝑜 𝑎𝑟𝑟𝑎𝑦

Fig. 1. Syntax of AWhile

The syntax of this language is shown in Fig. 1. Of particular note is the constant-time conditional 𝑏 ? 𝑒1 : 𝑒2, which
selects the value of 𝑒1 or 𝑒2 depending on whether 𝑏 evaluates to 𝚝𝚛𝚞𝚎. This is similar to e.g. conditional move
instructions in x86.

For sequential execution, states are triples ⟨𝑐, 𝜌, 𝜇⟩ of a command, a scalar state and an array state. The scalar
state 𝜌 maps scalar variables to integer values, and is used in the evaluation of arithmetic and boolean expressions,
written ⟦⋅⟧𝜌. Updates are denoted [𝚇 ↦ 𝑣]𝜌. The array state 𝜇 assigns each array variable a fixed size | 𝚊 |𝜇, and
defines a lookup function ⟦𝚊[𝑖]⟧𝜇. Updates are written [𝚊[𝑖] ↦ 𝑣]𝜇. Unlike scalar variables, the contents of arrays
can not be used directly in expressions, and are only accessible via read and write commands.

We use a standard small-step semantics for sequential execution, with the addition of optional observations produced
during execution (see Section 1.2). We write ⟨𝑐, 𝜌, 𝜇⟩ →𝑜 ⟨𝑐′, 𝜌′, 𝜇′⟩ (or ⟨𝑐, 𝜌, 𝜇⟩ →∙ ⟨𝑐′, 𝜌′, 𝜇′⟩ if no observation

is produced), as well as ⟨𝑐, 𝜌, 𝜇⟩ →𝒪 *⟨𝑐′, 𝜌′, 𝜇′⟩ for multi-step execution, where 𝒪 is a list of observations. The
full sequential semantics is given in Appendix B.

1.2 Leakage Model
Our work is based on the cryptographic constant-time leakage model, in which an attacker can observe control flow
and the addresses of all memory operations (read and write), and which is standard in the field of cryptography
[18], [19], [20], [21]. This leakage model describes what a co-located attacker on the same processor is able to infer
using standard cache and timing attacks such as Flush+Reload [22]. There are thus three instructions in AWhile
which produce leakage:

• 𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 ⋅ 𝚎𝚕𝚜𝚎 ⋅ instructions produce an observation 𝑏𝑟𝑎𝑛𝑐ℎ 𝑏, where 𝑏 is the value of the expression 𝑏𝑒
in the current state

• 𝑋 ← 𝑎[𝑖𝑒] instructions produce an observation 𝑟𝑒𝑎𝑑 𝚊 𝑖, where the index 𝑖 is the value of the expression 𝑖𝑒
• 𝑎[𝑖𝑒] ← 𝑒 instructions produce an observation 𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖, where 𝑖 is the value of the expression 𝑖𝑒.

1.3 Security Labelings
Throughout the report, we will make use of security labelings, which assign security levels to variables and arrays.
We only distinguish two security levels, public (𝕋) and secret (𝔽). Information may flow from public to private
locations, but not the other way round, so this forms a two-point lattice with 𝕋 ⊑ 𝔽 and 𝕋 ⊔ 𝔽 = 𝔽.

We typically write 𝑃 for variable labelings and 𝑃𝐴 for array labelings. We further lift variable labelings 𝑃 to a pair
of functions 𝑃(𝑎𝑒) and 𝑃(𝑏𝑒), which compute the security levels of arithmetic and boolean expressions respectively
in the usual way. Similar to scalar states, we write updates to labelings as [𝚇 ↦ 𝑙]𝑃, resp. [𝚊 ↦ 𝑙]𝑃𝐴.

3 / 20 (+4)



Jonathan Baumann Section 2. Background

2 Background
2.1 Speculative Execution Vulnerabilities
Speculative execution vulnerabilities, collectively known as Spectre, are vulnerabilities which arise due to a
hardware optimization known as speculative execution. This common feature in modern pipelined (and even out-
of-order) processors allows instructions to be executed on predicted data, thus avoiding pipeline stalls due to e.g.
slow memory operations. While speculative execution does not affect the correctness of the result, as all speculative
results are rolled back as soon as a misprediction is detected, this rollback does not apply to all microarchitectural
state, e.g. caches. As a result, traditional cache-timing attacks can be used to obtain information about this specu-
lative execution.

In this report, we focus only on Spectre-PHT⁴, in which the outcome of branch instructions is predicted before the
condition is completely evaluated. This enables e.g. the classic bounds-check-bypass [23]:

𝚒𝚏 𝑖 < 𝚊_𝚜𝚒𝚣𝚎 𝚝𝚑𝚎𝚗 𝚓 ← 𝚊[𝑖]; 𝚡 ← 𝚋[𝑗] 𝚎𝚕𝚜𝚎 𝚜𝚔𝚒𝚙
Here, an untrusted input 𝚒 is used to index a (public) array 𝑎. The resulting value 𝚓 is then used in a leakage-
producing operation 𝚡 ← 𝚋[𝑗]. Although a bounds check protects this snippet, an attacker may be able to train the
branch predictor to take the 𝚝𝚑𝚎𝚗 branch, and then execute this code with an out-of-bounds index 𝑖 pointing at
secret data, which would therefore be leaked during speculative execution.

2.2 Formal Models of Speculative Execution
Many formal models of speculative execution have been proposed in the literature, varying along several aspects
such as which sources of speculative execution can be modeled, how closely they model the execution of real
processors (for example, Blade [24] models out-of-order execution, whereas other tools stick to more linear models
of execution), and how they handle the inherent nondeterminism of the sources of speculative execution. For the
latter, techniques include modeling the branch predictor as an oracle, forcing it to always mispredict [5], or allowing
the attacker to control it explicitly via directives [10], [25]. For a more extensive review of different formalization
approaches, see also the systematization by S. Cauligi et al. [26].

In this report, we will only investigate three models: The first, which is used in Section 3, is a forward-only, directive-
based model, which means that the attacker has direct control over the branch predictor via directives given as input
to the semantics, but we also do not model rollbacks: Once the attacker initiates speculative execution, it can not
go back to nonspeculative execution. In Section 4, we will show that this is equivalent to a model with rollbacks,
before also considering an always-mispredict model (inspired by M. Guarnieri et al. [5]).

2.3 Notions of Security Against Speculative Execution Attacks
A common notion of security, especially for cryptographic code, is cryptographic constant-time security, which
requires that two executions must produce the same observations, as long as the initial states agree on all public
variables and arrays (as specified by the labelings 𝑃 and 𝑃𝐴):

Definition 2.3.1 (CCT security). 

𝜌1 ∼𝑃 𝜌2 ∧ 𝜇1 ∼𝑃𝐴 𝜇2 ∧ ⟨𝑐, 𝜌1, 𝜇1⟩ →𝒪1 ⟨𝚜𝚔𝚒𝚙, ⋅ , ⋅⟩

∧ ⟨𝑐, 𝜌2, 𝜇2⟩ →𝒪2 ⟨𝚜𝚔𝚒𝚙, ⋅ , ⋅⟩ ⇒ 𝒪1 = 𝒪2

Here, 𝜌1 ∼𝑃 𝜌2 denotes that 𝜌1 and 𝜌2 agree on the variables that are public according to 𝑃. Note also that we
require both traces to fully execute, reaching a terminal state, as we obviously cannot require equal observations if
we are comparing partial executions of different lengths⁵.

⁴The name is due to the pattern history table used for branch prediction, following the naming convenvtion by C. Canella et al. [2].
This variant is also known as Spectre-v1.

⁵This also means that this definition makes no statement about executions which do not terminate, which is often not desirable.
However, since we will not be using this definition in the remainder of the report, we prioritize ease of presentation.
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Therefore, a straightforward way to define security in the speculative setting is to require observational equivalence
in the same way, but for speculative execution:

Definition 2.3.2 (Speculative observational equivalence). 

⟨𝑐1, 𝜌1, 𝜇1, 𝑏1⟩ ≈𝑠 ⟨𝑐2, 𝜌2, 𝜇2, 𝑏2⟩ =̇ ∀𝒟, 𝒪1, 𝒪2.⟨𝑐1, 𝜌1, 𝜇1, 𝑏1⟩ →𝒪1
𝒟 S* ⋅ ∧ ⟨𝑐2, 𝜌2, 𝜇2, 𝑏2⟩ →𝒪2

𝒟 S* ⇒ 𝒪1 = 𝒪2

Definition 2.3.3 (SCT (speculative constant-time) security). 
𝜌1 ∼𝑃 𝜌2 ∧ 𝜇1 ∼𝑃𝐴 𝜇2 ⇒ ⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ≈𝑠 ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩

Here, 𝒟 denotes the directives that control misspeculation, and 𝑏 is a flag indicating whether the current execution
is misspeculating. It is set to 𝔽 in the definition of SCT security, as there is no misspeculation prior to the start of a
full program execution. We will introduce this semantics for speculative execution in more detail in Section 3, Fig. 7.

However, SCT security is not suitable for many applications, as it implies CCT security. While this is common
for cryptographic code, it would be an unreasonable restriction in other contexts, e.g. operating system kernels or
browsers. Thus, we need a notion of security which captures only the leakage introduced by speculative execution:
a Spectre mitigation can not (realistically) eliminate nonspeculative leaks, but we still need to reason about the
absence of speculative leaks in the presence of sequential leaks. While there are a variety of approaches to this, the
one we will focus on in this report is relative security, which is especially well-suited to compiler mitigations. It
states that if two initial states lead to attacker-indistinguishable sequential executions of the source program, then
the speculative executions of the mitigated program will also be indistinguishable:

Definition 2.3.4 (Relative security). 
⟨𝑐, 𝜌1, 𝜇1⟩ ≈ ⟨𝑐, 𝜌2, 𝜇2⟩ ⇒ ⟨⦅𝑐⦆, 𝜌1, 𝜇1, 𝔽⟩ ≈𝑠 ⟨⦅𝑐⦆, 𝜌2, 𝜇2, 𝔽⟩

Here, ⦅⋅⦆ denotes the transformation applied to the program. ≈ denotes sequential observational equivalence:

Definition 2.3.5 (Sequential observational equivalence). 

⟨𝑐1, 𝜌1, 𝜇1⟩ ≈ ⟨𝑐2, 𝜌2, 𝜇2⟩ =̇ ∀𝒪1, 𝒪2.⟨𝑐1, 𝜌1, 𝜇1⟩ →𝒪1 * ⋅ ∧ ⟨𝑐2, 𝜌2, 𝜇2⟩ →𝒪2 * ⋅ ⇒ 𝒪1 ≷ 𝒪2

In the conclusion, ≷ denotes that one of the sequences of observations must be a prefix of the other, which makes
this notion also applicable to partial executions.

2.4 Software-based Mitigations
The first mitigation proposed for Spectre-PHT was to effectively disable speculation using serializing “fence”
instructions such as the x86 lfence instruction, which enforces that all prior instructions have completed before
later instructions begin executing [1], [3]. While fence instructions after every branch clearly prevent Spectre-PHT
attacks, this comes with a heavy performance penalty [4], making it undesirable in practice.

Several recent works [7], [8] therefore focus on a different approach, which does not prevent speculative execution:

2.4.1 Speculative Load Hardening
Speculative load hardening, or SLH for short, is a mitigation against Spectre-PHT introduced by C. Carruth [6] for
the LLVM compiler. Instead of relying on instructions which block speculative execution, it detects misspeculated
execution, and conditionally protects secrets in that case.

To detect misspeculation, SLH maintains a misspeculation flag which tracks whether all branches along the current
execution path have been taken correctly. It achieves this by using branchless conditional instructions, which can
update the flag without being a source of speculative execution themselves. Such instructions are available in most
architectures, e.g. conditional moves in x86, but can otherwise also be implemented using boolean logic.

Leaks during speculative execution are prevented by masking the values or addresses of load and store instructions
using the misspeculation flag. For clarity, we also represent this masking using branchless conditionals, in practice,
boolean operations are commonly used instead.
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There are two variants of this masking, commonly referred to as address hardening⁶ or value hardening. In address
hardening, the masking is always applied to the address of load and store instructions, making sure that they will
always access some safe memory location. With value hardening, on the other hand, the masking can under some
circumstances be applied to the loaded value of a read instruction instead of the address. It is important to note,
however, that the versions of SLH implemented in LLVM provide neither SCT nor relative security, since leakage
via branch conditions is not protected.

2.4.1.1 SLH Master Recipe
In order to more easily compare different versions of SLH, we can describe them as instantiations of a common
“SLH master recipe” [11], where the actual masking operations of branch conditions, read and write indices are
parameterized by ⟦⋅⟧𝔹, ⟦⋅⟧⋅

𝑟𝑑) and ⟦⋅⟧⋅
𝑤𝑟 respectively. For index SLH, this looks as follows:

⦅𝚜𝚔𝚒𝚙⦆ =̇ 𝚜𝚔𝚒𝚙
⦅𝚡 ≔ 𝑒⦆ =̇ 𝚡 ≔ 𝑒
⦅𝑐1; 𝑐2⦆ =̇ ⦅𝑐1⦆; ⦅𝑐2⦆

⦅𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⦆ =̇ 𝚒𝚏 ⟦𝑏𝑒⟧𝔹 𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦𝑏𝑒⟧𝔹 ? 𝚋 : 1; ⦅𝑐1⦆
𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦𝑏𝑒⟧𝔹 ? 1 : 𝚋; ⦅𝑐2⦆

⦅𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐⦆ =̇ 𝚠𝚑𝚒𝚕𝚎 ⟦𝑏𝑒⟧𝔹 𝚍𝚘
𝚋 ≔ ⟦𝑏𝑒⟧𝔹 ? 𝚋 : 1; ⦅𝑐⦆;

𝚋 ≔ ⟦𝑏𝑒⟧𝔹 ? 1 : 𝚋
⦅𝚇 ← 𝚊[𝑖]⦆ =̇ 𝚇 ← 𝚊[⟦𝑖⟧𝚇

𝑟𝑑]
⦅𝚊[𝑖] ← 𝑒⦆ =̇ 𝚊[⟦𝑖⟧𝑒

𝑤𝑟] ← 𝑒
Fig. 2. Index SLH (iSLH) master recipe

For value SLH, we only need to adjust the read case. The conditions under which the loaded value can be masked
instead of the address are parameterized by 𝑉𝐶(⋅, ⋅):

⦅𝚇 ← 𝚊[𝑖]⦆ =̇ {𝚇 ← 𝚊[𝑖]; 𝚇 ≔ 𝑏 == 1 ? 0 : 𝚇 𝑖𝑓 𝑉𝐶(𝚇, 𝑖)
𝚇 ← 𝚊[⟦𝑖⟧𝚇

𝑟𝑑] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Fig. 3. Value SLH (vSLH) master recipe

2.4.2 Selective SLH
Selective SLH [7] is a variant of SLH which drastically increases the performance of mitigated code by selectively
masking values only when they are loaded into public variables. It enforces SCT, but only limited to a specific class
of programs, which are well-typed in a CT type system. For AWhile, we would use the following type system:

CT_Skip
𝑃; 𝑃𝐴 ⊢ 𝚜𝚔𝚒𝚙

𝑃(𝑒) ⊑ 𝑃(𝚇)CT_Asgn
𝑃; 𝑃𝐴 ⊢ 𝚇 ≔ 𝑒

𝑃; 𝑃𝐴 ⊢ 𝑐1 𝑃; 𝑃𝐴 ⊢ 𝑐2CT_Seq
𝑃; 𝑃𝐴 ⊢ 𝑐1; 𝑠2

𝑃(𝑏𝑒) 𝑃; 𝑃𝐴 ⊢ 𝑐1 𝑃; 𝑃𝐴 ⊢ 𝑐2CT_If
𝑃; 𝑃𝐴 ⊢ 𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑠2

𝑃(𝑏𝑒) 𝑃; 𝑃𝐴 ⊢ 𝑐CT_While
𝑃; 𝑃𝐴 ⊢ 𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐

𝑃(𝑖) 𝑃𝐴(𝚊) ⊑ 𝑃(𝚇)CT_ARead
𝑃; 𝑃𝐴 ⊢ 𝚇 ← 𝚊[𝑖]

𝑃(𝑖) 𝑃(𝑒) ⊑ 𝑃𝐴(𝚊)CT_AWrite
𝑃; 𝑃𝐴 ⊢ 𝚊[𝑖] ← 𝑒

Fig. 4. CT type system for Selective SLH

⁶Since our relatively high-level AWhile language operates directly on arrays and indices instead of computing addresses, we can not
fully capture all subtleties of address SLH with this language. Therefore, we will instead use the term index SLH to emphasize that we
only apply masking to the index, not the array itself.
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We can now instantiate the SLH master recipe for Selective SLH, where the protection of the index will depend on
the security level of the target variable:

⟦𝑏𝑒⟧𝔹 =̇ 𝑏𝑒

⟦𝑖⟧𝚇
𝑟𝑑 =̇ {𝚋 == 1 ? 0 : 𝑖 𝑖𝑓 𝑃 (𝚇)

𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⟦𝑖⟧𝑒
𝑤𝑟 =̇ {𝚋 == 1 ? 0 : 𝑖 𝑖𝑓 ¬𝑃(𝑒)

𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
Fig. 5a. SiSLH

𝑉𝐶(𝚇, 𝑖) =̇ 𝑃(𝚇)
⟦𝑏𝑒⟧𝔹 =̇ 𝑏𝑒
⟦𝑖⟧𝚇

𝑟𝑑 =̇ 𝑖
⟦𝑖⟧𝑒

𝑤𝑟 =̇ 𝑖
Fig. 5b. SvSLH

Fig. 5. SLH recipe instantiations for Selective SLH

Note that protecting write addresses in Fig.  5a is necessary, as illustrated by a counterexample presented by J.
Baumann et al. [11].

2.4.3 Ultimate SLH
Ultimate SLH [8] is an SLH variant offering the most exhaustive protections currently available to our knowledge.
Although a major aspect of Ultimate SLH is protection against leakage via variable-time instructions, we will not
model such behaviors for this report. Instead, we focus on another important aspect of Ultimate SLH: The fact that
it also protects branch conditions in order to prevent leakage via control flow⁷.

For Ultimate SLH, we thus instantiate the iSLH master recipe as follows:

⟦𝑏𝑒⟧𝔹 =̇ 𝚋 == 0 && 𝑏𝑒
⟦𝑖⟧𝚇

𝑟𝑑 =̇ 𝚋 == 1 ? 0 : 𝑖
⟦𝑖⟧𝑒

𝑤𝑟 =̇ 𝚋 == 1 ? 0 : 𝑖
Fig. 6. iSLH recipe instantiation for USLH

Note that there is no vSLH version, as Ultimate SLH always protects the memory address.

Ultimate SLH enforces relative security and puts no restrictions on the mitigated program. However, this security
comes at a high cost, with a performance overhead of roughly 150%⁸ [8].

3 Extending FlexSLH to Arbitrary Programs
3.1 Speculative Execution Model
For this section, we will use a forward-only, directive-based model of speculative execution, which means that

• we do not model rollbacks; once speculative execution is initiated, it can not go back to nonspeculative
execution

• the attacker exerts direct control over the branch predictor with directives that are supplied to the semantics.

The former helps to greatly simplify proofs, as the semantics does not need to keep track of previous states for
rollbacks. We will show in Section  4 that this captures the same leakage that would be captured by a model
with rollbacks. The latter overapproximates attacker capabilities regarding training the branch predictor, but also
concerning memory layout. Importantly, it enables reasoning with a high-level language, without having to consider
details regarding e.g. the memory layout.

We show here only the rules for branches, reads and writes. The full set of rules is given in Appendix C.

⁷This aspect can also be found in prior work by M. Patrignani and M. Guarnieri [27], although they do not mention the necessity of
this, nor that it differs from other variants.

⁸Even with this high overhead, it still outperforms fences, which have a performance overhead of roughly 300% on the same
benchmark [8]
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𝑏′ = ⟦𝑏𝑒⟧𝜌Spec_If
⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩ →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑠𝑡𝑒𝑝 S ⟨𝑐𝑏′ , 𝜌, 𝜇, 𝑏⟩

𝑏′ = ⟦𝑏𝑒⟧𝜌Spec_If_Force
⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩ →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑓𝑜𝑟𝑐𝑒 S ⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝚊[𝑖]⟧𝜇 𝑖 < | 𝚊 |𝜇Spec_Read
⟨𝚇 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝑏⟩ →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑠𝑡𝑒𝑝 S ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑏⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝚋[𝑗]⟧𝜇 𝑖 ≥ | 𝚊 |𝜇 𝑗 < | 𝚋 |𝜇Spec_Read_Force
⟨𝚇 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝕋⟩ →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑙𝑜𝑎𝑑 𝚋 𝑗 S ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝕋⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝑎𝑒⟧𝜌 𝑖 < | 𝚊 |𝜇Spec_Write
⟨𝚊[𝑖𝑒] ← 𝑎𝑒, 𝜌, 𝜇, 𝑏⟩ →→→→→→→→→→𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖

𝑠𝑡𝑒𝑝 S ⟨𝚜𝚔𝚒𝚙, 𝜌, [𝚊[𝑖] ↦ 𝑣]𝜇, 𝑏⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝑎𝑒⟧𝜌 𝑖 ≥ | 𝚊 |𝜇 𝑗 < | 𝚋 |𝜇Spec_Write_Force
⟨𝚊[𝑖𝑒] ← 𝑎𝑒, 𝜌, 𝜇, 𝕋⟩ →→→→→→→→→→𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖

𝑠𝑡𝑜𝑟𝑒 𝚋 𝑗 S ⟨𝚜𝚔𝚒𝚙, 𝜌, [𝚋[𝑗] ↦ 𝑣]𝜇, 𝕋⟩
Fig. 7. (Forward-only, directive-based) speculative semantics of AWhile (selected rules)

3.2 Flexible SLH
Flexible SLH [11] is a Spectre mitigation which generalizes both Selective and Ultimate SLH. It combines the ideas
of selectively applying masking based on a security labeling with the additional hardening of branch conditions.

Like Selective SLH, the simplest presentation of FSLH relies on an information-flow (IFC)⁹ type system, although it
uses a more general one similar to D. M. Volpano et al. [28]:

WT_Skip
𝑃; 𝑃𝐴 ⊢𝑝𝑐 𝚜𝚔𝚒𝚙

𝑃(𝑒) = 𝑙 𝑝𝑐 ⊔ 𝑙 ⊑ 𝑃(𝚇)WT_Asgn
𝑃; 𝑃𝐴 ⊢𝑝𝑐𝚇 ≔ 𝑒

𝑃; 𝑃𝐴 ⊢𝑝𝑐𝑐1 𝑃; 𝑃𝐴 ⊢𝑝𝑐𝑐2WT_Seq
𝑃; 𝑃𝐴 ⊢𝑝𝑐𝑐1; 𝑠2

𝑃(𝑏𝑒) = 𝑙 𝑃; 𝑃𝐴 ⊢𝑝𝑐 ⊔𝑙𝑐1 𝑃; 𝑃𝐴 ⊢𝑝𝑐 ⊔𝑙𝑐2WT_If
𝑃; 𝑃𝐴 ⊢𝑝𝑐 𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑠2

𝑃(𝑏𝑒) = 𝑙 𝑃; 𝑃𝐴 ⊢𝑝𝑐 ⊔𝑙𝑐WT_While
𝑃; 𝑃𝐴 ⊢𝑝𝑐 𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐

𝑃(𝑖) = 𝑙𝑖 𝑝𝑐 ⊔ 𝑙𝑖 ⊔ 𝑃𝐴(𝚊) ⊑ 𝑃(𝚇)WT_ARead
𝑃; 𝑃𝐴 ⊢𝑝𝑐𝚇 ← 𝚊[𝑖]

𝑃(𝑖) = 𝑙𝑖 𝑝𝑐 ⊔ 𝑙𝑖 ⊔ 𝑃(𝑒) ⊑ 𝑃𝐴(𝚊)WT_AWrite
𝑃; 𝑃𝐴 ⊢𝑝𝑐𝚊[𝑖] ← 𝑒

Fig. 8. IFC type system for FSLH (differences compared to Fig. 4 highlighted)

Using this type system, we can instantiate the SLH master recipe for FlexSLH:

⟦𝑏𝑒⟧𝔹 =̇ {𝚋 == 0 && 𝑏𝑒 𝑖𝑓 ¬𝑃(𝑏𝑒)
𝑏𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⟦𝑖⟧𝚇
𝑟𝑑 =̇ {𝚋 == 1 ? 0 : 𝑖 𝑖𝑓 𝑃(𝚇) ∨ ¬𝑃(𝑖)

𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⟦𝑖⟧𝑒
𝑤𝑟 =̇ {𝚋 == 1 ? 0 : 𝑖 𝑖𝑓 ¬𝑃(𝑒) ∨ ¬𝑃(𝑖)

𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
Fig. 9a. FiSLH

𝑉𝐶(𝚇, 𝑖) =̇ 𝑃(𝚇) ∧ 𝑃(𝑖)

⟦𝑏𝑒⟧𝔹 =̇ {𝚋 == 0 && 𝑏𝑒 𝑖𝑓 ¬𝑃(𝑏𝑒)
𝑏𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⟦𝑖⟧𝚇
𝑟𝑑 =̇ {𝚋 == 1 ? 0 : 𝑖 𝑖𝑓 ¬𝑃(𝑖)

𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⟦𝑖⟧𝑒
𝑤𝑟 =̇ {𝚋 == 1 ? 0 : 𝑖 𝑖𝑓 ¬𝑃(𝑖)

𝑖 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
Fig. 9b. FvSLH

Fig. 9. SLH recipe instantiations for flexible SLH (differences compared to Figure 5 highlighted)

⁹IFC stands for information-flow control. We will use this acronym, but typically omit “control” in writing.
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This version of FSLH ensures relative safety [11, Sections 5 and 6], but only for programs that are well-typed in this
type system. The proof is fully mechanized in Rocq.

3.3 FvSLH∀: Generalizing FSLH Using Static Information-Flow Analysis
This section is adapted from J. Baumann et al. [11, Section 7].

The main limitation of the version of FSLH presented above is that the presented type system rejects some programs,
as it requires the labelings 𝑃 and 𝑃𝐴 to remain constant throughout the program. To lift this restriction, we replace
it with a flow-sensitive information-flow analysis similar to the algorithmic version of S. Hunt and D. Sands’s [29,
Section 4] flow-sensitive type system. In contrast to the type system in Fig. 8, this IFC analysis updates the labelings
with each assignment, resulting in different labelings used to compute the IFC levels of individual expressions at
different program points. We call this version FvSLH∀ to clearly distinguish it from the versions above.

We record the results of the IFC analysis as annotations to our commands, as they are used both to apply protections
as well as in the security proof. We therefore extend the the syntax of AWhile as follows:

𝑐 ∈ 𝑎𝑐𝑜𝑚 ⩴ 𝚜𝚔𝚒𝚙 | 𝚇 ≔ 𝑒 | 𝑐;@(𝑃,𝑃𝐴) 𝑐
| 𝚒𝚏 𝑏@𝑙 𝚝𝚑𝚎𝚗 𝑐 𝚎𝚕𝚜𝚎 𝑐
| 𝚠𝚑𝚒𝚕𝚎 𝑏@𝑙 𝚍𝚘 𝑐@(𝑃,𝑃𝐴)

| 𝚇@𝑙𝚇 ← 𝚊[𝑒@𝑙𝑖 ]
| 𝚊[𝑒@𝑙𝑖 ] ← 𝑒
| 𝑏𝑟𝑎𝑛𝑐ℎ 𝑙 𝑐

Fig. 10. Syntax of annotated commands

• Branch conditions, array indices, and target variables of array reads are labelled with their statically determined
security level. These annotations are directly used by FvSLH∀.

• Sequence and loop commands are annotated with intermediate labelings used to define well-labeledness (see
Section 3.4.2).

• Finally, we introduce a new (annotated) command 𝑏𝑟𝑎𝑛𝑐ℎ 𝑙 𝑐, which wraps 𝑐 with an additional label 𝑙. This
annotation is not produced by the IFC analysis, but by an intermediate formalism in the proof, which we call
ideal semantics (see Section 3.4.1), and which will use this annotation to help track implicit flows.

⟪𝚜𝚔𝚒𝚙⟫𝑃,𝑃𝐴
𝑝𝑐 =̇ (𝚜𝚔𝚒𝚙, 𝑃, 𝑃𝐴)

⟪𝚇 ≔ 𝑒⟫𝑃,𝑃𝐴
𝑝𝑐 =̇ (𝚇 ≔ 𝑒, 𝑃, 𝑃𝐴)

⟪𝑐1; 𝑐2⟫𝑃,𝑃𝐴
𝑝𝑐 =̇ (𝑐1;@(𝑃1,𝑃𝐴1) 𝑐2, 𝑃2, 𝑃𝐴2) 𝑤ℎ𝑒𝑟𝑒 (𝑐1, 𝑃1, 𝑃𝐴1) = ⟪𝑐1⟫𝑃,𝑃𝐴

𝑝𝑐

𝑎𝑛𝑑 (𝑐2, 𝑃2, 𝑃𝐴2) = ⟪𝑐2⟫𝑃1,𝑃𝐴1𝑝𝑐

⟪𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2⟫𝑃,𝑃𝐴
𝑝𝑐 =̇ (𝚒𝚏 𝑏𝑒@𝑃(𝑏𝑒) 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2, 𝑃1 ⊔ 𝑃2, 𝑃𝐴1 ⊔ 𝑃𝐴2)

𝑤ℎ𝑒𝑟𝑒 (𝑐1, 𝑃1], 𝑃𝐴1) = ⟪𝑐1⟫
𝑃,𝑃𝐴
𝑝𝑐 ⊔𝑃(𝑏𝑒)

𝑎𝑛𝑑 (𝑐2, 𝑃2, 𝑃𝐴2) = ⟪𝑐2⟫
𝑃,𝑃𝐴
𝑝𝑐 ⊔𝑃(𝑏𝑒)

⟪𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐⟫𝑃,𝑃𝐴
𝑝𝑐 =̇ (𝚠𝚑𝚒𝚕𝚎 𝑏𝑒@𝑃𝑓𝑖𝑥(𝑏𝑒) 𝚍𝚘 𝑐@(𝑃𝑓𝑖𝑥,𝑃𝐴𝑓𝑖𝑥)) 𝑤ℎ𝑒𝑟𝑒

(𝑃𝑓𝑖𝑥, 𝑃𝐴𝑓𝑖𝑥) = 𝒇𝒊𝒙 (𝜆(𝑃′, 𝑃𝐴′). 𝒍𝒆𝒕 (𝑐, 𝑃″, 𝑃𝐴″) = ⟪𝑐⟫𝑃′,𝑃𝐴′

𝑝𝑐 ⊔𝑃′(𝑏𝑒)

𝒊𝒏 (𝑃″, 𝑃𝐴″) ⊔ (𝑃, 𝑃𝐴))

⟪𝚇 ← 𝚊[𝑖]⟫𝑃,𝑃𝐴
𝑝𝑐 =̇ (𝚇@𝑝𝑐 ⊔𝑃(𝑖)⊔ 𝑃𝐴(𝚊) ← 𝚊[𝑖@𝑃(𝑖)], [𝚇 ↦ 𝑝𝑐 ⊔ 𝑃(𝑖) ⊔ 𝑃𝐴(𝑎)]𝑃, 𝑃𝐴)

⟪𝚊[𝑖] ← 𝑒⟫𝑃,𝑃𝐴
𝑝𝑐 =̇ (𝚊[𝑖@𝑃(𝑖)] ← 𝑒, 𝑃, [𝚊 ↦ 𝑃𝐴(𝚊) ⊔ 𝑝𝑐 ⊔ 𝑃(𝑖) ⊔ 𝑃(𝑒)]𝑃𝐴)

Fig. 11. Flow-sensitive IFC analysis generating annotated commands
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Our IFC analysis is a straightforward extension of the one of S. Hunt and D. Sands [29] to AWhile while also adding
annotations to the commands, and is shown in Fig. 11. We write (𝑃1, 𝑃𝐴1) ⊑ (𝑃2, 𝑃𝐴2), 𝑃1 ⊔ 𝑃2, and 𝑃𝐴1 ⊔ 𝑃𝐴2
for the pointwise liftings from labels to maps. For assignments, loads, and stores, the analysis simply updates the
labelings and annotates expressions with the appropriate labels. It also takes into account the program counter
label 𝑝𝑐, which helps prevent implicit flows. For conditionals, both branches are analyzed recursively, raising the
𝑝𝑐 label by the label of the condition. We then take the join of the two resulting labelings, which is a necessary
overapproximation, as we cannot determine statically which branch will be taken.

Similarly, for loops, we must account for arbitrarily many iterations. This is achieved by a fixpoint labeling, i.e., a
labeling such that analysis of the loop body with this labeling results in an equal or more precise final labeling, which
implies that the annotations produced by the analysis remain correct for execution in this final labeling (where
correctness of annotations is formalized in Section 3.4.2). Further, this fixpoint labeling must also be less precise
than the initial labeling to ensure that the computed annotations are correct for the first iteration. We compute the
fixpoint labeling with a simple fixpoint iteration, ensuring termination by additionally providing the number of
variables and arrays assigned by 𝑐 as an upper bound. This is sound, as each iteration that does not yield a fixpoint
must change some array or variable from public to secret.

Once the information-flow analysis has produced an annotated command, these annotations can be used to apply
the protections. We denote the corresponding translation function by ⦅⋅⦆𝐹𝑣𝑆𝐿𝐻∀. Its behavior is similar to the FvSLH
instantiation shown in Fig. 9b, but using the provided labels instead of computing security levels of expressions:

⦅𝚜𝚔𝚒𝚙⦆𝐹𝑣𝑆𝐿𝐻∀ =̇ 𝚜𝚔𝚒𝚙
⦅𝚡 ≔ 𝚊𝚎⦆𝐹𝑣𝑆𝐿𝐻∀ =̇ 𝚡 ≔ 𝚊𝚎

⦅𝑐1;@(𝑃,𝑃𝐴) 𝑐2⦆
𝐹𝑣𝑆𝐿𝐻∀

=̇ ⦅𝑐1⦆
𝐹𝑣𝑆𝐿𝐻∀

; ⦅𝑐2⦆
𝐹𝑣𝑆𝐿𝐻∀

⦅𝚒𝚏 𝑏𝑒@𝑙 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽⦆𝐹𝑣𝑆𝐿𝐻∀
=̇ 𝚒𝚏 ⟦𝑏𝑒⟧𝑙

𝔹

𝚝𝚑𝚎𝚗 𝚋 ≔ ⟦𝑏𝑒⟧𝑙
𝔹 ? 𝚋 : 1; ⦅𝑐𝕋⦆𝐹𝑣𝑆𝐿𝐻∀

𝚎𝚕𝚜𝚎 𝚋 ≔ ⟦𝑏𝑒⟧𝑙
𝔹 ? 1 : 𝚋; ⦅𝑐𝔽⦆𝐹𝑣𝑆𝐿𝐻∀

⦅𝚠𝚑𝚒𝚕𝚎 𝑏𝑒@𝑙 𝚍𝚘 𝑐@(𝑃,𝑃𝐴)⦆
𝐹𝑣𝑆𝐿𝐻∀

=̇ 𝚠𝚑𝚒𝚕𝚎 ⟦𝑏𝑒⟧𝑙
𝔹

𝚋 ≔ ⟦𝑏𝑒⟧𝑙
𝔹 ? 𝚋 : 1; ⦅𝑐⦆𝐹𝑣𝑆𝐿𝐻∀

𝚋 ≔ ⟦𝑏𝑒⟧𝑙
𝔹 ? 1 : 𝚋

⦅𝚇@𝑙𝚇 ← 𝚊[𝑖@𝑙𝑖 ]⦆
𝐹𝑣𝑆𝐿𝐻∀

=̇
{{
{
{{𝚇 ← 𝚊[𝑖]; 𝚇 ≔ 𝚋 == 𝟷 ? 𝟶 : 𝚇 𝑖𝑓 𝑙𝚇 ∧ 𝑙𝑖

𝚇 ← 𝚊[⟦𝑖⟧𝑙𝚇,𝑙𝑖
𝑟𝑑 ] 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⦅𝚊[𝑖@𝑙𝑖 ] ← 𝑒⦆𝐹𝑣𝑆𝐿𝐻∀
=̇ 𝚊[⟦𝑖⟧𝑙𝑖𝑤𝑟] ← 𝑒

⟦𝑏𝑒⟧𝕋
𝔹 =̇ 𝑏𝑒

⟦𝑏𝑒⟧𝔽
𝔹 =̇ 𝚋 = 0 ∧ 𝑏𝑒

⟦𝑖⟧𝔽,𝕋
𝑟𝑑 =̇ 𝑖

⟦𝑖⟧⋅,⋅
𝑟𝑑 =̇ 𝚋 = 1 ? 0 : 𝑖

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⟦𝑖⟧𝕋
𝑤𝑟 =̇ 𝑖

⟦𝑖⟧𝔽
𝑤𝑟 =̇ 𝚋 = 1 ? 0 : 𝑖

Fig. 12. Translation function applying FvSLH∀ protections

3.4 Proof of Relative Security
The proof of relative security for FvSLH∀ relies on the following core ideas:

• An ideal semantics, which captures the same protections as the FvSLH∀ transformation, but as restrictions
within the semantics. This enables to prove separately the correctness of the transformation with respect to
the ideal semantics, and relative security of the ideal semantics.

• A well-labeledness predicate, similar to a typing judgment, which describes whether annotations are permissible
(although not necessarily precise) with respect to the information flow. This is required in order to prove that
the labels produced by the information-flow analysis remain valid during execution.

• The proof of relative security for the ideal semantics, which decomposes executions into three parts: a non-
speculative part which behaves exactly the same as the sequential semantics, a step which initiates speculation,
and a speculative part, during which the observations are fully determined by the directives and public values.
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3.4.1 Ideal Semantics
We simplify the proof of relative security by using an ideal semantics, which applies the same protections as
FvSLH∀, but as restrictions in the semantics instead of as a code transformation. As the FvSLH∀ code transformation
depends on the annotations produced by the information-flow analysis, the ideal semantics operates on annotated
commands. Further, we also instrument this ideal semantics to dynamically track the labels of variables and arrays,
which allows us to prove that ideal executions preserve agreement on public-labelled variables. The ideal semantics
(Fig. 13) therefore differs from the speculative semantics in Fig. 7 in the following ways:

• It operates on annotated commands.
• States additionally include a 𝑝𝑐 label, a variable labeling 𝑃, and an array labeling 𝑃𝐴, which are updated with

every step.
• Masking of indices, values and branch conditions based on the annotated labels is performed within the

semantics.

𝑏′ = (𝑙 ∨ ¬𝑏) ∧ ⟦𝑏𝑒⟧𝜌Ideal_If

⟨𝚒𝚏 𝑏𝑒@𝑙 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑠𝑡𝑒𝑝 i ⟨𝑏𝑟𝑎𝑛𝑐ℎ 𝑝𝑐  𝑐𝑏′ , 𝜌, 𝜇, 𝑏, 𝑝𝑐 ⊔ 𝑙, 𝑃, 𝑃𝐴⟩

𝑏′ = (𝑙 ∨ ¬𝑏) ∧ ⟦𝑏𝑒⟧𝜌Ideal_If_Force

⟨𝚒𝚏 𝑏𝑒@𝑙 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑓𝑜𝑟𝑐𝑒 i ⟨𝑏𝑟𝑎𝑛𝑐ℎ 𝑝𝑐  𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋, 𝑝𝑐 ⊔ 𝑙, 𝑃, 𝑃𝐴⟩

𝑖 = {0 𝑖𝑓 ¬(𝑙𝑖)∧𝑏
⟦𝑖𝑒⟧𝜌 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑣 = {0 𝑖𝑓 𝑙𝚇∧𝑙𝑖∧𝑏

⟦𝚊[𝑖]⟧𝜇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖 < | 𝚊 |𝜇Ideal_Read

⟨𝚇@𝑙𝚇 ← 𝚊[𝑖𝑒@𝑙𝑖 ], 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖
𝑠𝑡𝑒𝑝 i ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑏, 𝑝𝑐, [𝚇 ↦ 𝑙𝚇]𝑃, 𝑃𝐴⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = {0 𝑖𝑓 𝑙𝚇
⟦𝚋[𝑗]⟧𝜇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖 ≥ | 𝚊 |𝜇 𝑗 < | 𝚋 |𝜇Ideal_Read_Force

⟨𝚇@𝑙𝚇 ← 𝚊[𝑖𝑒@𝕋], 𝜌, 𝜇, 𝕋, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖
𝑙𝑜𝑎𝑑 𝚋 𝑗 i ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝕋, 𝑝𝑐, [𝚇 ↦ 𝑙𝚇]𝑃, 𝑃𝐴⟩

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑐1Ideal_Seq_Skip

⟨𝑐1;@(𝑃′,𝑃𝐴′) 𝑐2, …, 𝑝𝑐, …⟩ →∙∙ i ⟨𝑐2, …, 𝑝𝑐-𝑎𝑓𝑡𝑒𝑟 𝑐1 𝑝𝑐, …⟩

⟨𝑐, …⟩ →𝑜𝑑 i ⟨𝑐′, …⟩Ideal_Branch

⟨𝑏𝑟𝑎𝑛𝑐ℎ 𝑙 𝑐, …⟩ →𝑜𝑑 i ⟨𝑏𝑟𝑎𝑛𝑐ℎ 𝑙 𝑐′, …⟩
Fig. 13. Ideal semantics for FvSLH∀ (selected rules, see Appendix D)

In order to properly track implicit flows during execution, the 𝑝𝑐 label needs to be saved and restored correctly,
which we achieve using 𝑏𝑟𝑎𝑛𝑐ℎ annotations: When entering a branch 𝑐 in rules Ideal_If and Ideal_If_Force in
Fig. 13, 𝑐 is wrapped in an annotated command 𝑏𝑟𝑎𝑛𝑐ℎ 𝑙 𝑐, where 𝑝𝑐 is the program counter label before entering
the branch. The command 𝑐 underneath this annotation then takes steps as usual (Ideal_Branch). This leads to
terminated commands (𝚜𝚔𝚒𝚙) potentially being wrapped in an arbitrary number of such branch annotations, so we
also introduce the predicate 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 to describe such commands. The rule Ideal_Seq_Skip is adjusted accordingly,
allowing any terminal program on the left. In this rule, the function 𝑝𝑐-𝑎𝑓𝑡𝑒𝑟 𝑐 𝑝𝑐 determines the label of the
outermost branch annotation and uses it to restore the program counter label to the one before entering the branch.
If there is no branch annotation, 𝑝𝑐-𝑎𝑓𝑡𝑒𝑟 𝑐 𝑝𝑐 defaults to the current program counter label 𝑝𝑐. We choose to use
branch annotations in this way as it allows us to keep a one-to-one correspondence between steps of the sequential
and ideal semantics.
Since the ideal semantics matches the masking behavior of ⦅⋅⦆𝐹𝑣𝑆𝐿𝐻∀, the following compiler correctness result holds
for the transformation:
Lemma 3.4.1 (Backwards compiler correctness for FvSLH∀). 

(∀𝚊. | 𝚊 |𝜇 > 0) ∧ 𝚋 ∉ 𝑉𝐴𝑅𝑆(𝑐) ∧ 𝜌(𝚋) = ⟦𝑏⟧ℕ

⇒ ⟨⦅𝑐⦆𝐹𝑣𝑆𝐿𝐻∀, 𝜌, 𝜇, 𝑏⟩ →𝒪
𝒟 S*⟨𝑐′, 𝜌′, 𝜇′, 𝑏′⟩

⇒ ∃𝑐″𝑃′𝑃𝐴′𝑝𝑐′.⟨𝑐, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →𝒪
𝒟 i*⟨𝑐″, [𝚋 ↦ 𝜌(𝚋)]𝜌′, 𝜇′, 𝑝𝑐′, 𝑝′, 𝑃𝐴′⟩

∧ (𝑐′ = 𝚜𝚔𝚒𝚙 ⇒ 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑐″ ∧ 𝜌′(𝚋) = ⟦𝑏′⟧ℕ)
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3.4.2 Well-labeledness
Since the ideal semantics relies on the labels included in our annotated commands, we can only show relative
security if the annotations have been computed correctly, i.e. a secret value can never be labeled as public. While
this is the case for the initial annotated program obtained by our IFC analysis, we need a property that is preserved
during execution, and thus cannot reference the analysis directly. We therefore define a well-labeledness judgment
𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 𝑐 of an annotated command 𝑐 with respect to an initial labeling (𝑃1, 𝑃𝐴1) and 𝑝𝑐 label and
a final labeling (𝑃2, 𝑃𝐴2) with the derivation rules given in Fig. 14. The rules largely match the behavior of ⟪⋅⟫𝑃𝐴,𝑝𝑐

𝑃 ,
except instead of saving computed labels, we only make sure that they don’t contradict the already annotated ones.

(𝑃1, 𝑃𝐴1) ⊑ (𝑃2, 𝑃𝐴2)WL_Skip
𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 𝚜𝚔𝚒𝚙

([𝚇 ↦ 𝑃1(𝑒)]𝑃1, 𝑃𝐴1) ⊑ (𝑃2, 𝑃𝐴2)WL_Asgn
𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 𝚇 ≔ 𝑒

𝑏𝑟𝑎𝑛𝑐ℎ-𝑓𝑟𝑒𝑒 𝑐2 𝑃1, 𝑃𝐴1 ⇝ 𝑃′, 𝑃𝐴′ ⊢𝑝𝑐 𝑐1 𝑃′, 𝑃𝐴′ ⇝ 𝑃2, 𝑃𝐴2 ⊢(𝑝𝑐-𝑎𝑓𝑡𝑒𝑟 𝑐1 𝑝𝑐) 𝑐2WL_Seq
𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 𝑐1;@(𝑃′,𝑃𝐴′) 𝑐2

𝑃1(𝑏𝑒) ⊑ 𝑙𝑏𝑒 𝑏𝑟𝑎𝑛𝑐ℎ-𝑓𝑟𝑒𝑒 𝑐1 𝑏𝑟𝑎𝑛𝑐ℎ-𝑓𝑟𝑒𝑒 𝑐2 𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 ⊔𝑙𝑏𝑒 𝑐1
𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 ⊔𝑙𝑏𝑒 𝑐2WL_If

𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 𝚒𝚏 𝑏𝑒@𝑙𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐1 𝚎𝚕𝚜𝚎 𝑐2

𝑃1(𝑏𝑒) ⊑ 𝑙𝑏𝑒 𝑏𝑟𝑎𝑛𝑐ℎ-𝑓𝑟𝑒𝑒 𝑐 (𝑃1, 𝑃𝐴1) ⊑ (𝑃′, 𝑃𝐴′) (𝑃′, 𝑃𝐴′) ⊑ (𝑃2, 𝑃𝐴2)
𝑃′, 𝑃𝐴′ ⇝ 𝑃′, 𝑃𝐴′ ⊢𝑝𝑐 ⊔𝑙𝑏𝑒 𝑐1WL_While

𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 𝚠𝚑𝚒𝚕𝚎 𝑏𝑒@𝑙𝑏𝑒 𝚍𝚘 𝑐@(𝑃′,𝑃𝐴′)

𝑃1(𝑒) ⊑ 𝑙𝑖 𝑝𝑐 ⊑ 𝑙𝚇 𝑙𝑖 ⊑ 𝑙𝚇 𝑃𝐴1(𝚊) ⊑ 𝑙𝚇 ([𝚇 ↦ 𝑙𝚇]𝑃1, 𝑃𝐴1) ⊑ (𝑃2, 𝑃𝐴2)WL_ARead
𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 𝚇@𝑙𝚇 ← 𝚊[𝚎@𝑙𝑖 ]

𝑃1(𝑖) ⊑ 𝑙𝑖 (𝑃1, [𝚊 ↦ 𝑃𝐴1(𝚊) ⊔ 𝑝𝑐 ⊔ 𝑙𝑖 ⊔ 𝑃1(𝑒)]𝑃𝐴1) ⊑ (𝑃2, 𝑃𝐴2)WL_AWrite
𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 𝚊[𝑖@𝑙𝑖 ] ← 𝑒

𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 𝑐WL_Branch
𝑃1, 𝑃𝐴1 ⇝ 𝑃2, 𝑃𝐴2 ⊢𝑝𝑐 𝑏𝑟𝑎𝑛𝑐ℎ 𝑙 𝑐

Fig. 14. Well-labeledness of annotated commands

The most interesting case is that of loops (WL_While). Instead of doing another fixpoint iteration, we confirm that
the annotated labeling is indeed a fixpoint by using it for both the initial and final labeling for the loop body.

Like in the ideal semantics, in WL_Seq, we use 𝑝𝑐-𝑎𝑓𝑡𝑒𝑟 𝑐1 𝑙 to determine the correct program counter label after
executing the first part of a sequence. However, this would create problems for the preservation result below if we
had branch annotations at arbitrary locations, so we prohibit branch annotations in nonsensical locations using the
predicate 𝑏𝑟𝑎𝑛𝑐ℎ-𝑓𝑟𝑒𝑒 𝑐.

Note that well-labeledness does not require labels to match precisely, instead, they may overapproximate.
Specifically, the initial labeling can be made more precise and the final labeling less precise while preserving well-
labeledness.

Lemma 3.4.2 (IFC analysis produces well-labeled programs). 
⟪𝑐⟫𝑃,𝑃𝐴

𝑝𝑐 = (𝑐, 𝑃′, 𝑃𝐴′) ⇒ 𝑃, 𝑃𝐴 ⇝ 𝑃′, 𝑃𝐴′ ⊢𝑝𝑐 𝑐

Proof sketch.  By induction on 𝑐; most cases follow easily from the definition of well-labeledness. The loop case
follows by a nested induction on the number of public variables and arrays, with two base cases: If there are no
public variables or arrays left or if the set of public variables and arrays does not shrink in one iteration, then a
fixpoint has been reached; in both cases, well-labeledness of the loop body in the fixpoint labeling follows by the
outer induction hypothesis.  □
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Lemma 3.4.3 (→i preserves well-labeledness). 

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐 ⇒

⟨𝑐, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →𝒪
𝒟 i ⟨𝑐′, 𝜌, 𝜇, 𝑏, 𝑝𝑐′, 𝑃′, 𝑃𝐴′⟩ ⇒

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐′ 𝑐′

Proof sketch.  By induction on the annotated command. The loop case relies on the fact that well-labeledness is
preserved when making the initial labeling more precise, as the labeling when reaching the loop is generally more
precise than the loop’s fixed-point labeling. The sequence case is similar.  □

3.4.3 Key Theorems
We have already shown that FvSLH∀ is correct w.r.t. the ideal semantics (Lemma 3.4.1), so it remains to show the
relative security of the ideal semantics.

Lemma 3.4.4 (→i* ensures relative security). 

⟪𝑐⟫𝑃𝐴,𝕋
𝑃 = (𝑐, 𝑃′, 𝑃𝐴′) ∧ 𝜌1 ∼𝑃 𝜌2 ⇒

⟨𝑐, 𝜌1, 𝜇1⟩ ≈ ⟨𝑐, 𝜌2, 𝜇…2⟩ ⇒
⟨𝑐, 𝜌1, 𝜇1, 𝔽, 𝕋, 𝑃, 𝑃𝐴⟩ ≈𝑖 ⟨𝑐, 𝜌2, 𝜇2, 𝔽, 𝕋, 𝑃, 𝑃𝐴⟩

Proof sketch.  Unfolding ≈𝑖 exposes two ideal executions with shared directives 𝒟, producing observations 𝒪1 and
𝒪2. The goal is to establish their equality.

If the attacker does not force misspeculation, i.e. 𝒟 only contains 𝑠𝑡𝑒𝑝 directives, the goal follows immediately,
since the executions without misspeculation are identical to sequential executions, and ⟨𝑐, 𝜌1, 𝜇1⟩ ≈ ⟨𝑐, 𝜌2, 𝜇2⟩.
Otherwise, the directives must be of the form 𝒟 = [𝑠𝑡𝑒𝑝; …; 𝑠𝑡𝑒𝑝] ⋅ [𝑓𝑜𝑟𝑐𝑒] ⋅ 𝒟′, neatly decomposing both execu-
tions into three parts:

• A nonspeculative prefix, which behaves the same as sequential execution. Thus, these parts produce the same
observations, since ⟨𝑐, 𝜌1, 𝜇1⟩ ≈ ⟨𝑐, 𝜌2, 𝜇2⟩ and there is exactly one observation for each directive.

• A step with the 𝑓𝑜𝑟𝑐𝑒 directive, initiating misspeculation. This step produces a 𝑏𝑟𝑎𝑛𝑐ℎ observation for both
traces, but we can infer that both executions must take the same branch, since we know that the same
observation is produced during sequential execution.

• A mispredicted execution suffix. Applying Lemma 3.4.2, we obtain well-labeledness of 𝑐, which is preserved for
both executions by Lemma 3.4.3. We can prove that for this part, all observations depend only on the attacker
directives and public values: Since masking depends on annotations, and annotations are the same in both
executions, any potential leakage is either masked in both executions (and thus equal), or labelled as public, in
which case well-labeledness implies that the leakage is also labelled public according to the dynamic tracking,
and thus equal for both executions (since 𝜌1 ∼𝑃 𝜌2, and ideal execution preserves agreement on public-labelled
variables). We refer to this result as unwinding of speculative execution.  □

We compose Lemma 3.4.1 and Lemma 3.4.4 to prove the relative security of FvSLH∀. While Lemma 3.4.4 requires
the annotated command to be the result of the IFC analysis, this analysis always succeeds, so we obtain relative
security for all programs.

Theorem 3.4.5 (Relative security of FvSLH∀ for all programs). 
𝚋 ∉ 𝑉𝐴𝑅𝑆(𝑐) ∧ 𝜌1(𝚋) = 0 ∧ 𝜌2(𝚋) = 0 ⇒

(∀𝚊. | 𝚊 |𝜇1
> 0) ∧ (∀𝚊. | 𝚊 |𝜇2

> 0) ⇒
𝜌1 ∼𝑃 𝜌2 ∧ 𝜇1 ∼𝑃𝐴 𝜇2 ⇒
⟨𝑐, 𝜌1, 𝜇1⟩ ≈ ⟨𝑐, 𝜌2, 𝜇2⟩ ⇒

⟪𝑐⟫𝑃,𝑃𝐴
𝕋 = (𝑐, 𝑃′, 𝑃𝐴′) ⇒

⟨⦅𝑐⦆𝐹𝑣𝑆𝐿𝐻∀, 𝜌1, 𝜇1, 𝔽⟩ ≈𝑠 ⟨⦅𝑐⦆𝐹𝑣𝑆𝐿𝐻∀, 𝜌2, 𝜇2, 𝔽⟩
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4 Correspondences Between Different Speculative Execution Semantics
In this section, we will present two more models of speculative execution, and establish relationships between them.
We will begin with a directive-based model that includes rollbacks, adapting (and mechanizing) an equivalence
proof by G. Barthe et al. [10], before moving to an always-mispredict model (as introduced by M. Guarnieri et al. [5]).

However, before proceeding further, we will make one change to the forward-only semantics presented in Fig. 7:

𝑑 = 𝑠𝑡𝑒𝑝 ∨ 𝑑 = 𝑟𝑒𝑎𝑑 𝚋 𝑗 𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝚊[𝑖]⟧𝜇 𝑖 < | 𝚊 |𝜇Spec_Read
⟨𝚇 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝑏⟩ →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑑 S ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑏⟩

𝑑 = 𝑠𝑡𝑒𝑝 ∨ 𝑑 = 𝑤𝑟𝑖𝑡𝑒 𝚋 𝑗 𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝑎𝑒⟧𝜌 𝑖 < | 𝚊 |𝜇Spec_Write
⟨𝚊[𝑖𝑒] ← 𝑎𝑒, 𝜌, 𝜇, 𝑏⟩ →→→→→→→→→→𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖

𝑑 S ⟨𝚜𝚔𝚒𝚙, 𝜌, [𝚊[𝑖] ↦ 𝑣]𝜇, 𝑏⟩
Fig. 15. Modified Spec_Read and Spec_Write rules for forward-only, directive-based semantics of AWhile

We allow the normal, unforced executions to consume not only 𝑠𝑡𝑒𝑝, but also arbitrary 𝑟𝑒𝑎𝑑 𝚋 𝑗 (resp. 𝑤𝑟𝑖𝑡𝑒 𝚋 𝑗) di-
rectives, so long as the index is in bounds. This does not introduce any nondeterminism, since the Spec_Read_Force
and Spec_Write_Force rules only apply if the index is out-of-bounds. The importance of this change will be
explained in Section 4.2.2 - 4.2.3.

4.1 Equivalence Between Forward-Only and Rollback Semantics

4.1.1 Rollback Semantics
In order to support rollbacks, our semantics must keep track of previous states that a rollback would revert to. Thus,
this semantics will not operate on states, but on configurations, which are stacks of states. Execution normally only
affects the topmost state of the configuration, except for forced mispredictions, which add the mispredicted branch
to the top of the stack above the correct branch, and rollbacks, which pop the topmost state from the stack.

⟨𝑐1, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →𝑜𝑑 rb ⟨𝑐1′ , 𝜌′, 𝜇′, 𝑏′⟩ ⋅ 𝑆
Rb_Seq_Step

⟨𝑐1; 𝑐2, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →𝑜𝑑 rb ⟨𝑐1′ ; 𝑐2, 𝜌′, 𝜇′, 𝑏′⟩ ⋅ 𝑆

⟨𝑐1, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →𝑜𝑑 rb ⟨𝑐1′ , 𝜌′, 𝜇′, 𝑏′⟩ ⋅ ⟨𝑐1″ , 𝜌″, 𝜇″, 𝑏″⟩ ⋅ 𝑆
Rb_Seq_Grow

⟨𝑐1; 𝑐2, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →𝑜𝑑 rb ⟨𝑐1′ ; 𝑐2, 𝜌′, 𝜇′, 𝑏′⟩ ⋅ ⟨𝑐1″ ; 𝑐2, 𝜌″, 𝜇″, 𝑏″⟩ ⋅ 𝑆

Rb_Seq_Skip
⟨𝚜𝚔𝚒𝚙; 𝑐, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →∙∙ rb ⟨𝑐, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆

𝑏′ = ⟦𝑏𝑒⟧𝜌Rb_If
⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑠𝑡𝑒𝑝 rb ⟨𝑐𝑏′ , 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆

𝑏′ = ⟦𝑏𝑒⟧𝜌Rb_If_Force
⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑓𝑜𝑟𝑐𝑒 rb ⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋⟩ ⋅ ⟨𝑐𝑏′ , 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆

𝑑 = 𝑠𝑡𝑒𝑝 ∨ 𝑑 = 𝑟𝑒𝑎𝑑 𝚋 𝑗 𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝚊[𝑖]⟧𝜇 𝑖 < | 𝚊 |𝜇Rb_Read
⟨𝚇 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑑 rb ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝚋[𝑗]⟧𝜇 𝑖 ≥ | 𝚊 |𝜇 𝑗 < | 𝚋 |𝜇Rb_Read_Force
⟨𝚇 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝕋⟩ ⋅ 𝑆 →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑙𝑜𝑎𝑑 𝚋 𝑗 rb ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝕋⟩ ⋅ 𝑆

Rb_Rollback
⟨𝑐, 𝜌, 𝜇, 𝑏⟩ ⋅ ⟨𝑐′, 𝜌′, 𝜇′, 𝑏′⟩ ⋅ 𝑆 →→→→→→→→→𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 rb ⟨𝑐′, 𝜌′, 𝜇′, 𝑏′⟩ ⋅ 𝑆
Fig. 16. Directive-based semantics with rollbacks (selected rules, see Appendix E)
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4.1.2 Equivalence Proof
Recall the definition of ≈𝑠 in Definition 2.3.2. For clarity, we will now write ≈𝑓𝑤𝑑 for the forward-only semantics
(Fig. 15) and define ≈𝑟𝑏 for the semantics with rollbacks (Fig. 16) in the same way.

We will establish that the two semantics are equivalent regarding observational equivalence, i.e.
⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ≈𝑓𝑤𝑑 ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⇔ ⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] ≈𝑟𝑏 ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⋅ []

(where [] denotes the empty stack). The proof largely follows the paper proof by G. Barthe et al. [10] for a similar
language and semantics, which, to our knowledge, has not been mechanized. However, one notable difference is
that our semantics has silent steps, which slightly complicates the proofs.

We will cover the right-to-left direction first, as it is much easier.
Theorem 4.1.1 (Observational equivalence in semantics with rollbacks implies forward-only observa-
tional equivalence). 

⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ≈𝑟𝑏 ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⇒ ⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] ≈𝑓𝑤𝑑 ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⋅ []

Proof sketch.  Unfolding ≈𝑓𝑤𝑑, we have a pair of forward-only executions with shared directives 𝒟, producing
observations 𝒪1 and 𝒪2. We further have that all executions in the rollback semantics, starting in the same initial
states with equal directives, produce equal observations.

Thus, it suffices to show that for every forward-only execution, there is an execution in the rollback semantics with
the same directives producing the same observations:

∀𝑐, 𝜌, 𝜇, 𝑏, 𝒟, 𝒪, 𝑐′, 𝜌′, 𝜇′, 𝑏′.⟨𝑐, 𝜌, 𝜇, 𝑏⟩ →𝒪
𝒟 S*⟨𝑐′, 𝜌′, 𝜇′, 𝑏′⟩

⇒ ∀𝑆.∃𝑆′.⟨𝑐, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →𝒪
𝒟 rb*⟨𝑐′, 𝜌′, 𝜇′, 𝑏′⟩ ⋅ 𝑆′

The proof proceeds by induction on the multi-step execution, with nested induction on the single step.  □
The other direction is a lot more complicated, requiring several intermediate lemmas.

First, suppose we have two executions for directives 𝒟 ⋅ 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘, producing the same observations 𝒪 ⋅ 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘. We
can then “cut out” the suffixes of those executions that are rolled back, producing two shorter executions that still
reach the same final state. For bookkeeping purposes, we require that 𝒟 does not include any 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘, so that we
can be sure that the resulting executions are free of rollbacks.

Lemma 4.1.2 (Removing rolled-back execution suffixes). 
𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 ∉ 𝒟 ⇒
⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] →𝒪

𝒟 rb*⟨𝑐1′ , 𝜌1′ , 𝜇1′ , 𝑏1′⟩ ⋅ ⟨𝑐1″ , 𝜌1″ , 𝜇1″ , 𝑏1″⟩ ⋅ 𝑆1 →→→→→→→→→𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘
𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 rb ⟨𝑐1″ , 𝜌1″ , 𝜇1″ , 𝑏1″⟩ ⋅ 𝑆1 ⇒

⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⋅ [] →𝒪
𝒟 rb*⟨𝑐2′ , 𝜌2′ , 𝜇2′ , 𝑏2′⟩ ⋅ ⟨𝑐2″ , 𝜌2″ , 𝜇2″ , 𝑏2″⟩ ⋅ 𝑆2 →→→→→→→→→𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 rb ⟨𝑐2″ , 𝜌2″ , 𝜇2″ , 𝑏2″⟩ ⋅ 𝑆2 ⇒

∃𝒟′, 𝒪′. ⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] →→→→𝒪′

𝒟′ rb*⟨𝑐1″ , 𝜌1″ , 𝜇1″ , 𝑏1″⟩ ⋅ 𝑆1 ∧

⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⋅ [] →→→→𝒪′

𝒟′ rb*⟨𝑐2″ , 𝜌2″ , 𝜇2″ , 𝑏2″⟩ ⋅ 𝑆2 ∧

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 ∉ 𝒟′ ∧ | 𝒟′ | ≤ | 𝒟 |
Proof sketch.  By induction (from the right) on 𝒟. In the inductive case, 𝒟 = 𝒟′ ⋅ 𝑑, we decompose
⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] →→→→→→→𝒪

𝒟′ ⋅ 𝑑 rb*⟨𝑐1′ , 𝜌1′ , 𝜇1′ , 𝑏1′⟩ ⋅ ⟨𝑐1″ , 𝜌1″ , 𝜇1″ , 𝑏1″⟩ ⋅ 𝑆1 into three parts: A multi-step execution

with 𝒟′, a single step with 𝑑, and another silent multi-step execution after. We distinguish two cases:
• If 𝑑 ≠ 𝑓𝑜𝑟𝑐𝑒, since we already know that 𝑑 ≠ 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘, neither the single step with 𝑑 nor the silent multi-step

execution after affect anything below the topmost state on the stack. Thus, the multi-step execution with 𝒟′

results in a configuration ⟨𝑐∗
1, 𝜌∗

1, 𝜇∗
1, 𝑏∗

1⟩ ⋅ ⟨𝑐1″ , 𝜌1″ , 𝜇1″ , 𝑏1″⟩ ⋅ 𝑆1 (same for the second execution). Since we
can easily construct a step ⟨𝑐∗

1, 𝜌∗
1, 𝜇∗

1, 𝑏∗
1⟩ ⋅ ⟨𝑐1″ , 𝜌1″ , 𝜇1″ , 𝑏1″⟩ →→→→→→→→→𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 rb ⟨𝑐1″ , 𝜌1″ , 𝜇1″ , 𝑏1″⟩, we can thus

apply the induction hypothesis.
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• If 𝑑 = 𝑓𝑜𝑟𝑐𝑒, then we know that this was the step in which the topmost state was added to the stack. We
further know that the state underneath, the one that the rollback results in, is the one with the correct branch.
Using rule Rb_If, we can thus construct an execution that reaches the same final state, but with no rollback.

 □
Using induction, we can use this lemma to “cut out” all parts of an execution that were rolled back:

Corollary 4.1.2.1 (Skipping all rolled-back executions). 

⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] →𝒪
𝒟 rb*⟨𝑐1″ , 𝜌1″ , 𝜇1″ , 𝑏1″⟩ ⋅ 𝑆1 ⇒

⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⋅ [] →𝒪
𝒟 rb*⟨𝑐2″ , 𝜌2″ , 𝜇2″ , 𝑏2″⟩ ⋅ 𝑆2 ⇒

∃𝒟′, 𝒪′. ⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] →→→→𝒪′

𝒟′ rb*⟨𝑐1″ , 𝜌1″ , 𝜇1″ , 𝑏1″⟩ ⋅ 𝑆1 ∧

⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⋅ [] →→→→𝒪′

𝒟′ rb*⟨𝑐2″ , 𝜌2″ , 𝜇2″ , 𝑏2″⟩ ⋅ 𝑆2 ∧

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 ∉ 𝒟′

Proof sketch.  By induction on | 𝒟 |. In the inductive case, we decompose 𝒟 as 𝒟′ ⋅ 𝑑, and correspondingly the
multi-step executions into a multi-step part for 𝒟′, a single step with directive 𝑑, and a silent multi-step execution
after. We distinguish two cases:

• If 𝑑 ≠ 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘, we apply the induction hypothesis to the multi-step executions for 𝒟′. This yields a pair of
rollback-free executions resulting in the same states, which we recompose with the single steps for 𝑑 and the
silent suffixes to obtain the desired result.

• If 𝑑 = 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘, we first apply the induction hypothesis to the multi-step execution for 𝒟′. This produces a
pair of rollback-free executions, which then allows us to apply Lemma 4.1.2.

 □
This now allows us to prove the other direction of the equivalence:

Theorem 4.1.3 (Observational equivalence in forward-only semantics implies observational equivalence
in semantics with rollbacks). 

⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ≈𝑓𝑤𝑑 ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⇒ ⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] ≈𝑟𝑏 ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⋅ []

Proof sketch.  Unfolding ≈𝑟𝑏, we have a pair of executions in the rollback semantics with shared directives 𝒟,
producing observations 𝒪1 and 𝒪2. We further have that all executions in the forward-only semantics, starting in
the same initial states with equal directives, produce equal observations.

We distinguish two cases:
• If 𝒪1 = 𝒪2, we are done.
• If 𝒪1 ≠ 𝒪2, then there is a (possibly empty) common prefix 𝒪 and two observations 𝑜1 ≠ 𝑜2 such that 𝒪1 = 𝒪 ⋅

𝑜1 ⋅ 𝒪1′  and 𝒪2 = 𝒪 ⋅ 𝑜2 ⋅ 𝒪2′ . We decompose the executions into a multi-step execution producing 𝒪, single
steps producing 𝑜1 resp. 𝑜2, and suffixes for 𝒪1 and 𝒪2.

Using Corollary 4.1.2.1, we obtain rollback-free executions for 𝒪 reaching the same final states. Similar to the
proof of Theorem 4.1.1, these can be translated into forward-only executions by induction on the multi-step
execution with nested induction on the command.

Further, we know that the directive for the single steps producing 𝑜1 and 𝑜2 can not be 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘, as this would
imly that both observations are 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘, but 𝑜1 ≠ 𝑜2. Therefore, we obtain forward-only versions of these
steps in the same way.

Composing the obtained forward-only executions results in two executions starting in ⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩
and ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ and producing observations 𝒪 ⋅ 𝑜1 ≠ 𝒪 ⋅ 𝑜2, which contradicts the assumption that
⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ≈𝑓𝑤𝑑 ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩.

 □
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4.2 Obervational Equivalence in Directive-Based Semantics Implies Observational
Equivalence in Always-Mispredict Semantics

4.2.1 Always-Mispredict Semantics
We now introduce an always-mispredict semantics for AWhile, inspired by M. Guarnieri et al. [5]. As the name
implies, this semantics always triggers misprediction at every branch, instead of allowing an attacker to specify. It
also models a speculation window, which decreases with every instruction, and triggers a rollback once exhausted.
When first initiating misspeculation, the speculation window is set to a maximum size 𝑤𝑚𝑎𝑥, which we provide as
a parameter to the semantics.

In the absence of attacker directions, the attacker can also not specify the locations of out-of-bounds memory
accesses. Instead, this semantics is parametric in a memory layout 𝐿, which we model as simply a list of variable
names specifying an order of arrays. We assume that all arrays are placed one after the other¹⁰. A function
𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑑-𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐿(𝙰,𝑖)

𝜇  returns the resulting memory location as a tuple (𝚋, 𝑗) of a (potentially different) array and
index within that array, or ⊥ if the the index is too large to hit any array (in which case the execution gets stuck).

Instead of a boolean flag for misspeculation, our states now include a speculation window 𝑤 ∈ ℕ ∪ {⊥}, where ⊥
denotes that the current execution is not misspeculating. A predicate 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 describes when a state is allowed to
take a step (i.e. when 𝑤 ≠ 0). Further, we use two helper functions: 𝑑𝑒𝑐𝑟 𝑤, which decrements the window while
misspeculating, but leaves ⊥ unchanged, and 𝑠𝑝𝑒𝑐𝑤𝑖𝑛𝑤𝑚𝑎𝑥

𝑤, which sets the window for a new misprediction to
𝑤 − 1 if the current state is already misspeculating, or 𝑤𝑚𝑎𝑥 if the current window is ⊥.

𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑤 𝑣 = ⟦𝑎𝑒⟧𝜌AM_Asgn
⟨𝚇 ≔ 𝑎𝑒, 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆 →∙ 𝑎𝑚𝐿

𝑤𝑚𝑎𝑥

⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑑𝑒𝑐𝑟 𝑤⟩ ⋅ 𝑆

⟨𝑐1, 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆 →𝑜 𝑎𝑚𝐿
𝑤𝑚𝑎𝑥

⟨𝑐1′ , 𝜌′, 𝜇′, 𝑏′⟩ ⋅ 𝑆
AM_Seq_Step

⟨𝑐1; 𝑐2, 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆 →𝑜 𝑎𝑚𝐿
𝑤𝑚𝑎𝑥

⟨𝑐1′ ; 𝑐2, 𝜌′, 𝜇′, 𝑤′⟩ ⋅ 𝑆

⟨𝑐1, 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆 →𝑜 𝑎𝑚𝐿
𝑤𝑚𝑎𝑥

⟨𝑐1′ , 𝜌′, 𝜇′, 𝑤′⟩ ⋅ ⟨𝑐1″ , 𝜌″, 𝜇″, 𝑤″⟩ ⋅ 𝑆
AM_Seq_Grow

⟨𝑐1; 𝑐2, 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆 →𝑜 𝑎𝑚𝐿
𝑤𝑚𝑎𝑥

⟨𝑐1′ ; 𝑐2, 𝜌′, 𝜇′, 𝑤′⟩ ⋅ ⟨𝑐1″ ; 𝑐2, 𝜌″, 𝜇″, 𝑤″⟩ ⋅ 𝑆

𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑤AM_Seq_Skip
⟨𝚜𝚔𝚒𝚙; 𝑐, 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆 →∙ 𝑎𝑚𝐿

𝑤𝑚𝑎𝑥

⟨𝑐, 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆

𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑤AM_While
⟨𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐, 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆 →∙ 𝑎𝑚𝐿

𝑤𝑚𝑎𝑥

⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐; 𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐 𝚎𝚕𝚜𝚎 𝚜𝚔𝚒𝚙, 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆

𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑤 𝑏′ = ⟦𝑏𝑒⟧𝜌AM_If
⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆 →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑎𝑚𝐿
𝑤𝑚𝑎𝑥

⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝑠𝑝𝑒𝑐𝑤𝑖𝑛𝑤𝑚𝑎𝑥
𝑤⟩ ⋅ ⟨𝑐𝑏′ , 𝜌, 𝜇, 𝑑𝑒𝑐𝑟 𝑤⟩ ⋅ 𝑆

𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑤 𝑖 = ⟦𝑖𝑒⟧𝜌 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑑-𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐿(𝚊,𝑖)
𝜇 = (𝚋, 𝑗) 𝑣 = ⟦𝚋[𝑗]⟧𝜇AM_Read

⟨𝚇 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆 →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖
𝑎𝑚𝐿

𝑤𝑚𝑎𝑥

⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑑𝑒𝑐𝑟 𝑤⟩ ⋅ 𝑆

𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑤 𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝑎𝑒⟧𝜌 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑑-𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝐿(𝚊,𝑖)
𝜇 = (𝚋, 𝑗)AM_Write

⟨𝚊[𝑖𝑒] ← 𝑎𝑒, 𝜌, 𝜇, 𝑤⟩ ⋅ 𝑆 →→→→→→→→→→𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖
𝑎𝑚𝐿

𝑤𝑚𝑎𝑥

⟨𝚜𝚔𝚒𝚙, 𝜌, [𝚋[𝑗] ↦ 𝑣]𝜇, 𝑑𝑒𝑐𝑟 𝑤⟩ ⋅ 𝑆

¬ 𝑒𝑛𝑎𝑏𝑙𝑒𝑑 𝑤AM_Rollback
⟨𝑐, 𝜌, 𝜇, 𝑤⟩ ⋅ ⟨𝑐′, 𝜌′, 𝜇′, 𝑤′⟩ ⋅ 𝑆 →→→→→→→→→𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘

𝑎𝑚𝐿
𝑤𝑚𝑎𝑥

⟨𝑐′, 𝜌′, 𝜇′, 𝑤′⟩ ⋅ 𝑆
Fig. 17. Always-mispredict semantics for AWhile

¹⁰We do not explicitly require that the layout contains all arrays used in the program. If it does not, the semantics will simply get stuck.
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4.2.2 Observational Equivalence in Directive-Based Semantics Implies Observational Equivalence in
Always-Mispredict Semantics, with Restrictions

We first define observational equivalence for the always-mispredict semantics:

Definition 4.2.1 (Observational equivalence in the always-mispredict semantics). 

⟨𝑐1, 𝜌1, 𝜇1, 𝑏1⟩ ≈𝑎𝑚 ⟨𝑐2, 𝜌2, 𝜇2, 𝑏2⟩ =̇ ∀𝒪1, 𝒪2.⟨𝑐1, 𝜌1, 𝜇1, 𝑏1⟩ →𝒪1
𝑎𝑚𝐿

𝑤𝑚𝑎𝑥

* ⋅ ∧ ⟨𝑐2, 𝜌2, 𝜇2, 𝑏2⟩ →𝒪2
𝑎𝑚𝐿

𝑤𝑚𝑎𝑥

*

⇒ |𝒪1| = |𝒪2| ⇒ 𝒪1 = 𝒪2

Note that in the absence of directives, which would ensure that both executions proceed equally far, we require
an additional assumption that the lengths of 𝒪1 and 𝒪2 are equal. This is equivalent to conluding 𝒪1 ≷ 𝒪2 as in
Definition 2.3.5, but slightly easier for the proof.

It is clear that the attacker in the directive-based semantics is more powerful than in the always-mispredict seman-
tics, as it can directly control the locations of out-of-bounds memory accesses, whereas the always-mispredict se-
mantics determines those locations based on a memory layout. However, we might still expect that states which sat-
isfy observational equivalence in the directive-based semantics (⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] ≈𝑟𝑏 ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⋅ []) will also
satisfy observational equivalence in the always-mispredict semantics (⟨𝑐, 𝜌1, 𝜇1, ⊥⟩ ⋅ [] ≈𝑎𝑚 ⟨𝑐, 𝜌2, 𝜇2, ⊥⟩ ⋅ []).
However, this is only true under some restrictions:

• 𝜇1 and 𝜇2 must agree on the lengths of arrays, so that out-of-bounds accesses result in the same locations for
both executions

• ⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ and ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ must not get stuck in nonspeculative states in in the directive-based seman-
tics, in other words, whenever the misspeculation flag is set to 𝔽, it must be possible to proceed either with no
directive or with a 𝑠𝑡𝑒𝑝 directive. This is necessary because the directive-based semantics gets stuck if an out-
of-bounds access is encountered during nonspeculative execution, whereas the always-mispredict semantics
will continue with a memory location determined by the layout, after which we have no more assumptions on
the execution. We thus need to rule out such cases.

We will thus prove the following:

Theorem 4.2.2 (Observational equivalence in directive-based semantics implies observational equiva-
lence in always-mispredict semantics). 

(∀𝚊, |𝚊|𝜇1
= |𝚊|𝜇2

) ⇒

(∀𝒟, 𝒪1, 𝑐1′ , 𝜌1′ , 𝜇1′ , 𝑆1. ⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] →𝒪1
𝒟 rb*⟨𝑐1′ , 𝜌1′ , 𝜇1′ , 𝔽⟩ ⋅ 𝑆1

⇒ ⟨𝑐1′ , 𝜌1′ , 𝜇1′ , 𝔽⟩ →∙∙ rb ⋅ ∨ ⟨𝑐1′ , 𝜌1′ , 𝜇1′ , 𝔽⟩ →→→→→⋅
𝑠𝑡𝑒𝑝 rb ⋅) ⇒

(∀𝒟, 𝒪2, 𝑐2′ , 𝜌2′ , 𝜇2′ , 𝑆2.⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⋅ [] →𝒪2
𝒟 rb*⟨𝑐2′ , 𝜌2′ , 𝜇2′ , 𝔽⟩ ⋅ 𝑆2

⇒ ⟨𝑐2′ , 𝜌2′ , 𝜇2′ , 𝔽⟩ →∙∙ rb ⋅ ∨ ⟨𝑐2′ , 𝜌2′ , 𝜇2′ , 𝔽⟩ →→→→→⋅
𝑠𝑡𝑒𝑝 rb ⋅) ⇒

⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] ≈𝑟𝑏 ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⋅ [] ⇒
⟨𝑐, 𝜌1, 𝜇1, ⊥⟩ ⋅ [] ≈𝑎𝑚 ⟨𝑐, 𝜌2, 𝜇2, ⊥⟩ ⋅ []

Proof sketch.  Unfolding ≈𝑎𝑚, we obtain a pair of traces ⟨𝑐, 𝜌1, 𝜇1, ⊥⟩ ⋅ [] →𝒪1
𝑎𝑚𝐿

𝑤𝑚𝑎𝑥

⟨𝑐1′ , 𝜌1′ , 𝜇1′ , 𝑤1′⟩ ⋅ 𝑆1 and

⟨𝑐, 𝜌2, 𝜇2, ⊥⟩ ⋅ [] →𝒪2
𝑎𝑚𝐿

𝑤𝑚𝑎𝑥

⟨𝑐2′ , 𝜌2′ , 𝜇2′ , 𝑤2′⟩ ⋅ 𝑆2 such that |𝒪1| = |𝒪2|.

The goal is to show equality of 𝒪1 and 𝒪2.

Since ⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] ≈𝑟𝑏 ⟨𝑐, 𝜌2, 𝜇2, 𝔽⟩ ⋅ [], it is sufficient to prove that there exists a sequence of directives 𝒟
which produces corresponding executions in the rollback semantics:
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∃𝒟, 𝑏1′ , 𝑏2′ , 𝑆1′ , 𝑆2′ .⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] →𝒪1
𝒟 rb ⟨𝑐1′ , 𝜌1′ , 𝜇1′ , 𝑏1′⟩ ⋅ 𝑆1′

∧ ⟨𝑐, 𝜌1, 𝜇1, 𝔽⟩ ⋅ [] →𝒪1
𝒟 rb ⟨𝑐1′ , 𝜌1′ , 𝜇1′ , 𝑏1′⟩ ⋅ 𝑆1′

∧ (𝑤1′ = ⊥ ⇔ 𝑏1′ = 𝔽) ∧ (𝑤1′ = ⊥ ⇔ 𝑏1′ = 𝔽) ∧ 𝑆1 ≡ 𝑆1′ ∧ 𝑆2 ≡ 𝑆2′

where 𝑆1 ≡ 𝑆1′  denotes that 𝑆1 and 𝑆1′  agree on the program, scalar and array state of each state in the stack, and
the misspeculation flag is false iff the speculation window is ⊥.

Proof by induction (from the right) on 𝒪1 and using the fact that |𝒪1| = |𝒪2|. The base case is easy, as silent steps
are essentially the same in both semantics. In the inductive case, we have 𝒪1 = 𝒪1′ ⋅ 𝑜1 and 𝒪2 = 𝒪2′ ⋅ 𝑜2. We
decompose both executions into three parts: A multi-step execution producing 𝒪1′  resp. 𝒪2′ , a single step producing
observation 𝑜1 resp. 𝑜2, and a silent multi-step execution suffix. We apply the induction hypothesis to the first
multi-step executions to obtain corresponding directive-based executions. Directive-based executions for the silent
suffixes are obtained similar to the base case.

However, before we can make any statements regarding the the single steps which produce 𝑜1 and 𝑜2, we first
need to establish that they are at the same point during execution. Towards this end, we first apply observational
equivalence in the directive-based semantics to conclude that 𝒪1′ = 𝒪2′ . This implies that the control flow is the
same for both executions. Together with the fact that the next step after produces leakage, meaning that both
execution have taken all possible silent steps, this allows us to prove that the resulting configurations agree on the
program and speculation window of all states (proof by induction on one execution, inversion of the other, and
nested induction on the command).

Now, we can proceed using several case distinctions:
• If the speculation window is 0, we know that both single steps must be a rollback, and thus 𝑜1 = 𝑜2 = 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘.

Thus, we can construct the corresponding step in the rollback semantics using Rb_Rollback.
• Otherwise, we distinguish based on 𝑜1.

‣ If 𝑜1 = 𝑏𝑟𝑎𝑛𝑐ℎ 𝑏, we also know that 𝑜2 = 𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′ for some 𝑏′, since both single steps execute
the same command. We thus know that both steps must use the rule AM_If (potentially underneath
AM_Seq_Grow), thus, we can choose the directive 𝑓𝑜𝑟𝑐𝑒 and construct an equivalent step (by induction
on the command, using rules Rb_If_Force and Rb_Seq_Grow).

‣ If 𝑜1 = 𝑟𝑒𝑎𝑑 𝚊 𝑖, we also know that 𝑜2 = 𝑟𝑒𝑎𝑑 𝚊 𝑖′. However, we do not know whether the indices are
in-bounds, or not. We distinguish based on whether we are currently misspeculating:

– If the speculation window is ⊥, we can use the assumption that nonspeculative execution in the
directive-based semantics does not get stuck. We thus obtain two single steps in the directive-based
semantics using the 𝑠𝑡𝑒𝑝 directive. This, in turn, implies that the indices 𝑖 and 𝑖′ are in-bounds,
which then means that these steps indeed correspond to the single steps in the always-mispredict
semantics.

– Otherwise, we perform a case distinction on whether 𝑖 and 𝑖′ are in-bounds:
• If both indices are in-bounds, we can construct corresponding steps in the directive-based

semantics using the 𝑠𝑡𝑒𝑝 directive.
• If both indices are out-of-bounds, we pick the directive 𝑙𝑜𝑎𝑑 𝚋 𝑗, where 𝚋[𝑗] is the accessed

location of one of the two steps, and construct the corresponding steps in the directive-based
semantics. Then, we apply observational equivalence in the directive-based semantics to obtain
that 𝑟𝑒𝑎𝑑 𝚊 𝑖 = 𝑟𝑒𝑎𝑑 𝚊 𝑖′. Since all arrays have the same length in both executions, this means
that both steps in the always-mispredict semantics also access the same location, and thus
correspond to the directive-based steps we’ve constructed.

• If only one index is out-of-bounds, we pick the directive 𝑙𝑜𝑎𝑑 𝚋 𝑗 for the location 𝚋[𝑗] that is
accessed by this index. This is where the change from Fig. 15 comes into play, as it allows us
to construct steps in the directive-based semantics for both executions using the same directive,
despite the index being in-bounds for one of them. Without this change, we would not be able to
choose a single directive for both executions, and thus would not be able to proceed with the proof.
Once again, we apply observational equivalence in the directive-based semantics to obtain
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that 𝑟𝑒𝑎𝑑 𝚊 𝑖 = 𝑟𝑒𝑎𝑑 𝚊 𝑖′. We thus obtain a contradiction, as 𝚊 has the same length in both
executions, so the index can’t be both in-bounds and out-of-bounds.

‣ The case 𝑜1 = 𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖 proceeds similar to the previous case.

 □

4.2.3 Conclusions
In my opinion, the most interesting part of the previous subsection is not the result, but the restrictions we had to
add to prove it.

While it is reasonable in our setting to assume that arrays have the same length, this would not apply for languages
which support e.g. dynamic allocation. This may indicate that, for such languages, it will be necessary to model the
memory layout at least to some extent.

Regarding the restriction that the directive-based execution must not get stuck in nonspeculative states, it reveals
that the directive-based semantics implicitly assumes that the program is sequentially memory-safe. While this is
not necessarilty a severe restriction - especially in the context of compiler-based mitigations, as it is hard to provide
any guarantees if a program exhibits undefined behaviour - it would certainly be preferrable to be explicit about
this assumption¹¹.

Most important, however, is the change we had to make to the semantics in Fig. 15, which is essential for the proof
of Theorem 4.2.2 to conclude. Without this change, the semantics simply does not capture leakage due to different
memory addresses if only one of those addresses is in-bounds. This is potentially a serious flaw in formal methods,
also quite subtle and therefore easy to miss; indeed, it was missed for our work on FSLH (Section 3, [11]) (although
this should only affect some minor lemmas, not the overall result).

5 Conclusions and Future Work
This report covered two results towards making efficient Spectre mitigations available for all programs and towards
increasing the trustworthiness of the theoretical foundations: In Section 3, I presented a proof of relative security
for FvSLH∀, a compiler-based mitigation against Specte-PHT which uses an information-flow analysis to apply
protections selectively to only operations which might leak secrets. In Section 4, I present an equivalence proof
between directive-based speculation models with and without rollbacks, and further, a proof that observational
equivalence in the directive-based model implies observational equivalence in an always-mispredict model, albeit
under some restrictions. All proofs have been mechanized in the Rocq proof assistant and are available online¹²¹³.

As mentioned in Section 4.2.3, the work presented in Section 4 uncovered a flaw with the model used in the security
proof of FSLH (Section 3, [11]). While I am reasonably confident that this is not a flaw with the mitigation itself - in
particular, the unwinding result should still hold - the proofs will need to be adjusted for the fixed model (Fig. 15),
requiring modifications to minor lemmas. It will then also be interesting to investigate prior work for similar issues.

Apart from this, the always-mispredict semantics presented here is still very abstract and pretty far removed from
real hardware. The limitations and issues we already uncovered with just this step indicate that it would be very
beneficial to further close the gap between abstract models and real hardware with mechanized formal proofs.

For FSLH, as mentioned on page 2 of this report, there are still open questions regarding a real-world implementation
of this mitigation. At the same time, we are looking at incorporating mitigations against other Spectre vulnerabil-
ities, with the long-term aim of developing a combined mitigation against all known speculative execution attacks
with a mechanized proof of relative security.
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B Sequential Semantics of AWhile

𝑣 = ⟦𝑎𝑒⟧𝜌Seq_Asgn
⟨𝚇 ≔ 𝑎𝑒, 𝜌, 𝜇⟩ →∙ ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇⟩

⟨𝑐1, 𝜌, 𝜇⟩ →𝑜∙ S ⟨𝑐1′ , 𝜌′, 𝜇′⟩
Seq_Seq_Step

⟨𝑐1; 𝑐2, 𝜌, 𝜇⟩ →𝑜 ⟨𝑐1′ ; 𝑐2, 𝜌′, 𝜇′⟩

Seq_Seq_Skip
⟨𝚜𝚔𝚒𝚙; 𝑐, 𝜌, 𝜇⟩ →∙ ⟨𝑐, 𝜌, 𝜇⟩

Seq_While
⟨𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐, 𝜌, 𝜇⟩ →∙ ⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐; 𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐 𝚎𝚕𝚜𝚎 𝚜𝚔𝚒𝚙, 𝜌, 𝜇⟩

𝑏′ = ⟦𝑏𝑒⟧𝜌Seq_If
⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇⟩ →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

⟨𝑐𝑏′ , 𝜌, 𝜇⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝚊[𝑖]⟧𝜇 𝑖 < | 𝚊 |𝜇Seq_Read
⟨𝚇 ← 𝚊[𝑖𝑒], 𝜌, 𝜇⟩ →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖 ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝑎𝑒⟧𝜌 𝑖 < | 𝚊 |𝜇Seq_Write
⟨𝚊[𝑖𝑒] ← 𝑎𝑒, 𝜌, 𝜇⟩ →→→→→→→→→→𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖 ⟨𝚜𝚔𝚒𝚙, 𝜌, [𝚊[𝑖] ↦ 𝑣]𝜇⟩

Fig. 18. Sequential semantics of AWhile

C Forward-Only, Directive-Based Speculative Semantics of AWhile

𝑣 = ⟦𝑎𝑒⟧𝜌Spec_Asgn
⟨𝚇 ≔ 𝑎𝑒, 𝜌, 𝜇, 𝑏⟩ →∙∙ S ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑏⟩

⟨𝑐1, 𝜌, 𝜇, 𝑏⟩ →𝑜𝑑 S ⟨𝑐1′ , 𝜌′, 𝜇′, 𝑏′⟩
Spec_Seq_Step

⟨𝑐1; 𝑐2, 𝜌, 𝜇, 𝑏⟩ →𝑜𝑑 S ⟨𝑐1′ ; 𝑐2, 𝜌′, 𝜇′, 𝑏′⟩

Spec_Seq_Skip
⟨𝚜𝚔𝚒𝚙; 𝑐, 𝜌, 𝜇, 𝑏⟩ →∙∙ S ⟨𝑐, 𝜌, 𝜇, 𝑏⟩

Spec_While
⟨𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐, 𝜌, 𝜇, 𝑏⟩ →∙∙ S ⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐; 𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐 𝚎𝚕𝚜𝚎 𝚜𝚔𝚒𝚙, 𝜌, 𝜇, 𝑏⟩

𝑏′ = ⟦𝑏𝑒⟧𝜌Spec_If
⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩ →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑠𝑡𝑒𝑝 S ⟨𝑐𝑏′ , 𝜌, 𝜇, 𝑏⟩

𝑏′ = ⟦𝑏𝑒⟧𝜌Spec_If_Force
⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩ →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑓𝑜𝑟𝑐𝑒 S ⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝚊[𝑖]⟧𝜇 𝑖 < | 𝚊 |𝜇Spec_Read
⟨𝚇 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝑏⟩ →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑠𝑡𝑒𝑝 S ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑏⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝚋[𝑗]⟧𝜇 𝑖 ≥ | 𝚊 |𝜇 𝑗 < | 𝚋 |𝜇Spec_Read_Force
⟨𝚇 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝕋⟩ →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑙𝑜𝑎𝑑 𝚋 𝑗 S ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝕋⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝑎𝑒⟧𝜌 𝑖 < | 𝚊 |𝜇Spec_Write
⟨𝚊[𝑖𝑒] ← 𝑎𝑒, 𝜌, 𝜇, 𝑏⟩ →→→→→→→→→→𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖

𝑠𝑡𝑒𝑝 S ⟨𝚜𝚔𝚒𝚙, 𝜌, [𝚊[𝑖] ↦ 𝑣]𝜇, 𝑏⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝑎𝑒⟧𝜌 𝑖 ≥ | 𝚊 |𝜇 𝑗 < | 𝚋 |𝜇Spec_Write_Force
⟨𝚊[𝑖𝑒] ← 𝑎𝑒, 𝜌, 𝜇, 𝕋⟩ →→→→→→→→→→𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖

𝑠𝑡𝑜𝑟𝑒 𝚋 𝑗 S ⟨𝚜𝚔𝚒𝚙, 𝜌, [𝚋[𝑗] ↦ 𝑣]𝜇, 𝕋⟩
Fig. 19. (Forward-only, directive-based) speculative semantics of AWhile (selected rules)
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D Ideal Semantics for FvSLH∀

𝑣 = ⟦𝑎𝑒⟧𝜌Ideal_Asgn
⟨𝚇 ≔ 𝑎𝑒, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →∙∙ S ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑏, 𝑝𝑐, [𝚇 ↦ 𝑝𝑐 ⊔ 𝑃(𝑎𝑒)]𝑃, 𝑃𝐴⟩

⟨𝑐1, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →𝑜𝑑 S ⟨𝑐1′ , 𝜌′, 𝜇′, 𝑏′, 𝑝𝑐″, 𝑃″, 𝑃𝐴″⟩
Ideal_Seq_Step

⟨𝑐1;@(𝑃′,𝑃𝐴′) 𝑐2, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →𝑜𝑑 S ⟨𝑐1′ ;@(𝑃′,𝑃𝐴′) 𝑐2, 𝜌′, 𝜇′, 𝑏′, 𝑝𝑐″, 𝑃″, 𝑃𝐴″⟩

𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑐1Ideal_Seq_Skip

⟨𝑐1;@(𝑃′,𝑃𝐴′) 𝑐2, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →∙∙ i ⟨𝑐2, 𝜌, 𝜇, 𝑏, 𝑝𝑐-𝑎𝑓𝑡𝑒𝑟 𝑐1 𝑝𝑐, 𝑃, 𝑃𝐴⟩

Ideal_While
⟨𝚠𝚑𝚒𝚕𝚎 𝑏𝑒@𝑙 𝚍𝚘 𝑐@(𝑃′,𝑃𝐴′), 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →∙∙ S

⟨𝚒𝚏 𝑏𝑒@𝑙 𝚝𝚑𝚎𝚗 𝑐;@(𝑃′,𝑃𝐴′) 𝚠𝚑𝚒𝚕𝚎 𝑏𝑒@𝑙 𝚍𝚘 𝑐@(𝑃′,𝑃𝐴′) 𝚎𝚕𝚜𝚎 𝚜𝚔𝚒𝚙, 𝜌, 𝜇, 𝑏⟩

𝑏′ = (𝑙 ∨ ¬𝑏) ∧ ⟦𝑏𝑒⟧𝜌Ideal_If

⟨𝚒𝚏 𝑏𝑒@𝑙 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑠𝑡𝑒𝑝 i ⟨𝑏𝑟𝑎𝑛𝑐ℎ 𝑝𝑐  𝑐𝑏′ , 𝜌, 𝜇, 𝑏, 𝑝𝑐 ⊔ 𝑙, 𝑃, 𝑃𝐴⟩

𝑏′ = (𝑙 ∨ ¬𝑏) ∧ ⟦𝑏𝑒⟧𝜌Ideal_If_Force

⟨𝚒𝚏 𝑏𝑒@𝑙 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑓𝑜𝑟𝑐𝑒 i ⟨𝑏𝑟𝑎𝑛𝑐ℎ 𝑝𝑐  𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋, 𝑝𝑐 ⊔ 𝑙, 𝑃, 𝑃𝐴⟩

𝑖 = {0 𝑖𝑓 ¬(𝑙𝑖)∧𝑏
⟦𝑖𝑒⟧𝜌 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑣 = {0 𝑖𝑓 𝑙𝚇∧𝑙𝑖∧𝑏

⟦𝚊[𝑖]⟧𝜇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖 < | 𝚊 |𝜇Ideal_Read

⟨𝚇@𝑙𝚇 ← 𝚊[𝑖𝑒@𝑙𝑖 ], 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖
𝑠𝑡𝑒𝑝 i ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑏, 𝑝𝑐, [𝚇 ↦ 𝑙𝚇]𝑃, 𝑃𝐴⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = {0 𝑖𝑓 𝑙𝚇
⟦𝚋[𝑗]⟧𝜇 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑖 ≥ | 𝚊 |𝜇 𝑗 < | 𝚋 |𝜇Ideal_Read_Force

⟨𝚇@𝑙𝚇 ← 𝚊[𝑖𝑒@𝕋], 𝜌, 𝜇, 𝕋, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖
𝑙𝑜𝑎𝑑 𝚋 𝑗 i ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝕋, 𝑝𝑐, [𝚇 ↦ 𝑙𝚇]𝑃, 𝑃𝐴⟩

𝑖 = {0 𝑖𝑓 ¬𝑙𝑖∧𝑏
⟦𝑖𝑒⟧𝜌 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑣 = ⟦𝑎𝑒⟧𝜌 𝑖 < | 𝚊 |𝜇Ideal_Write

⟨𝚊[𝑖𝑒@𝑙𝑖𝑒 ] ← 𝑎𝑒, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →→→→→→→→→→𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖
𝑠𝑡𝑒𝑝 i ⟨𝚜𝚔𝚒𝚙, 𝜌, [𝚊[𝑖] ↦ 𝑣]𝜇, 𝑏, 𝑝𝑐, 𝑃, [𝚊 ↦ 𝑃(𝚊) ⊔ 𝑝𝑐 ⊔ 𝑙𝑖𝑒 ⊔ 𝑃(𝑎𝑒)] 𝑃𝐴⟩

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝑎𝑒⟧𝜌 𝑖 ≥ | 𝚊 |𝜇 𝑗 < | 𝚋 |𝜇Ideal_Write_Force

⟨𝚊[𝑖𝑒@𝕋] ← 𝑎𝑒, 𝜌, 𝜇, 𝕋, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →→→→→→→→→→𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖
𝑠𝑡𝑜𝑟𝑒 𝚋 𝑗 i ⟨𝚜𝚔𝚒𝚙, 𝜌, [𝚋[𝑗] ↦ 𝑣]𝜇, 𝕋, 𝑝𝑐, 𝑃, [𝚊 ↦ 𝑃𝐴(𝚊) ⊔ 𝑝𝑐 ⊔ 𝑃(𝑎𝑒)] 𝑃𝐴⟩

⟨𝑐, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →𝑜𝑑 i ⟨𝑐′, 𝜌′, 𝜇′, 𝑏′, 𝑝𝑐′, 𝑃′, 𝑃𝐴′⟩Ideal_Branch

⟨𝑏𝑟𝑎𝑛𝑐ℎ 𝑙 𝑐, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →𝑜𝑑 i ⟨𝑏𝑟𝑎𝑛𝑐ℎ 𝑙 𝑐′, 𝜌′, 𝜇′, 𝑏′, 𝑝𝑐′, 𝑃′, 𝑃𝐴′⟩
Fig. 20. Ideal semantics for FvSLH∀
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E Directive-based Semantics with Rollbacks

𝑣 = ⟦𝑎𝑒⟧𝜌Rb_Asgn
⟨𝚇 ≔ 𝑎𝑒, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →∙∙ rb ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆

⟨𝑐1, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →𝑜𝑑 rb ⟨𝑐1′ , 𝜌′, 𝜇′, 𝑏′⟩ ⋅ 𝑆
Rb_Seq_Step

⟨𝑐1; 𝑐2, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →𝑜𝑑 rb ⟨𝑐1′ ; 𝑐2, 𝜌′, 𝜇′, 𝑏′⟩ ⋅ 𝑆

⟨𝑐1, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →𝑜𝑑 rb ⟨𝑐1′ , 𝜌′, 𝜇′, 𝑏′⟩ ⋅ ⟨𝑐1″ , 𝜌″, 𝜇″, 𝑏″⟩ ⋅ 𝑆
Rb_Seq_Grow

⟨𝑐1; 𝑐2, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →𝑜𝑑 rb ⟨𝑐1′ ; 𝑐2, 𝜌′, 𝜇′, 𝑏′⟩ ⋅ ⟨𝑐1″ ; 𝑐2, 𝜌″, 𝜇″, 𝑏″⟩ ⋅ 𝑆

Rb_Seq_Skip
⟨𝚜𝚔𝚒𝚙; 𝑐, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →∙∙ rb ⟨𝑐, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆

Rb_While
⟨𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →∙∙ rb ⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐; 𝚠𝚑𝚒𝚕𝚎 𝑏𝑒 𝚍𝚘 𝑐 𝚎𝚕𝚜𝚎 𝚜𝚔𝚒𝚙, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆

𝑏′ = ⟦𝑏𝑒⟧𝜌Rb_If
⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑠𝑡𝑒𝑝 rb ⟨𝑐𝑏′ , 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆

𝑏′ = ⟦𝑏𝑒⟧𝜌Rb_If_Force
⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →→→→→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑓𝑜𝑟𝑐𝑒 rb ⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋⟩ ⋅ ⟨𝑐𝑏′ , 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆

𝑑 = 𝑠𝑡𝑒𝑝 ∨ 𝑑 = 𝑟𝑒𝑎𝑑 𝚋 𝑗 𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝚊[𝑖]⟧𝜇 𝑖 < | 𝚊 |𝜇Rb_Read
⟨𝚇 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑑 rb ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝚋[𝑗]⟧𝜇 𝑖 ≥ | 𝚊 |𝜇 𝑗 < | 𝚋 |𝜇Rb_Read_Force
⟨𝚇 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝕋⟩ ⋅ 𝑆 →→→→→→→→→𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑙𝑜𝑎𝑑 𝚋 𝑗 rb ⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝑣]𝜌, 𝜇, 𝕋⟩ ⋅ 𝑆

𝑑 = 𝑠𝑡𝑒𝑝 ∨ 𝑑 = 𝑤𝑟𝑖𝑡𝑒 𝚋 𝑗 𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝑎𝑒⟧𝜌 𝑖 < | 𝚊 |𝜇Rb_Write
⟨𝚊[𝑖𝑒] ← 𝑎𝑒, 𝜌, 𝜇, 𝑏⟩ ⋅ 𝑆 →→→→→→→→→→𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖

𝑑 rb ⟨𝚜𝚔𝚒𝚙, 𝜌, [𝚊[𝑖] ↦ 𝑣]𝜇, 𝑏⟩ ⋅ 𝑆

𝑖 = ⟦𝑖𝑒⟧𝜌 𝑣 = ⟦𝑎𝑒⟧𝜌 𝑖 ≥ | 𝚊 |𝜇 𝑗 < | 𝚋 |𝜇Rb_Write_Force
⟨𝚊[𝑖𝑒] ← 𝑎𝑒, 𝜌, 𝜇, 𝕋⟩ ⋅ 𝑆 →→→→→→→→→→𝑤𝑟𝑖𝑡𝑒 𝚊 𝑖

𝑠𝑡𝑜𝑟𝑒 𝚋 𝑗 rb ⟨𝚜𝚔𝚒𝚙, 𝜌, [𝚋[𝑗] ↦ 𝑣]𝜇, 𝕋⟩ ⋅ 𝑆

Rb_Rollback
⟨𝑐, 𝜌, 𝜇, 𝑏⟩ ⋅ ⟨𝑐′, 𝜌′, 𝜇′, 𝑏′⟩ ⋅ 𝑆 →→→→→→→→→𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 rb ⟨𝑐′, 𝜌′, 𝜇′, 𝑏′⟩ ⋅ 𝑆
Fig. 21. Directive-based semantics with rollbacks
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