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Forward-Only Semantics to Rollbacks Mo i

The model for the FSLH security proof is very abstract:

- Directives control branch prediction

- Attacker chooses location for out-of-bounds accesses

« Forward-only: No rollback mechanism, cannot leave misspeculation

(skip, [X = alt]]p, p, )

. al
in-bounds read

step
(x < alie], p, u, b)

read ag
out-of-bounds  loaq ;

misspeculating (skip, [X = b[j]lp, p, T)
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b = [[be]]p
(C—|b’7 P My T)
<if be then Cr else Crs Py I b> M;:—Z;y)rb <Cb’7 P, :u>

RB Ir FORCE

RB ROLLBACK

(¢, p, u, b)
<C/, plv ,LL/, bl) :ZZZZ’,:}rb <C/, :0/7 :u/) b/>
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- Different leakage with rollbacks = different forward-only leakage
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Always-Mispredict Semantics Mo i

» unlimited misspeculation - limited speculation window
- attacker-chosen memory locations - flat memory layout
- attacker-controlled misspeculation - always mispredict

/

How is this more realistic?
- proposed for use in Hardware-Software Contracts

» idea: vendor-guaranteed leakage model

17721
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From Directives to Always-Mispredict: Lesso R

* Models can make implicit safety assumptions
» undefined behaviour might be intentionally out-of-scope
» but this should be explicit!

- Directive-based models must have a directive allowing both in-bounds and out-of-
bounds access
» Easy to miss! Affects proofs of Selective and Flexible SLH
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 Real-world implementation of Flexible SLH
» open questions: when during compilation to perform analysis?

- Mitigations for other SPECTRE variants
» e.g. prediction of indirect branch targets and return addresses

« Ever more accurate models
» Hardware-Software Contracts?
» dynamic attackers?
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