
Towards More Efficient and Trustworthy
Formally Secure Compilation Against
Speculative Side-Channel Attacks

FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

Jonathan Baumann
Supervised by Cătălin Hrițcu Formally Verified Security group, MPI-SP, Germany



Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗
𝚓 ← 𝚊1[𝚒];
𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

1 / 21



Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗
𝚓 ← 𝚊1[𝚒];
𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

👀 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1)

1 / 21



Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗
𝚓 ← 𝚊1[𝚒];
𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

👀 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1)
👀 𝚒

1 / 21



Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗
𝚓 ← 𝚊1[𝚒];
𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

👀 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1)
👀 𝚒
👀 𝚊1[𝚒]

1 / 21



Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗
𝚓 ← 𝚊1[𝚒];
𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

let 𝚒 = 4

1 / 21



Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗
𝚓 ← 𝚊1[𝚒];
𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

let 𝚒 = 4

speculates by
predicting branch

1 / 21



Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗
𝚓 ← 𝚊1[𝚒];
𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

let 𝚒 = 4

speculates by
predicting branch

1 / 21



Spectre (v1) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

… 𝑎1[0] 𝑎1[1] 𝑎1[2] 𝑎1[3] secret …

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗
𝚓 ← 𝚊1[𝚒];
𝚡 ← 𝚊2[𝚓]

𝚎𝚕𝚜𝚎
…

let 𝚒 = 4

speculates by
predicting branch

👀 secret

1 / 21



Previous Spectre Mitigations FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

!Existing mitigations

2 / 21



Previous Spectre Mitigations FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

!Existing mitigations

very slow

2 / 21



Previous Spectre Mitigations FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

!Existing mitigations

very slow very restrictive

2 / 21



Previous Spectre Mitigations FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

!Existing mitigations

very slow very restrictive

insecure

2 / 21



Previous Spectre Mitigations FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

!Existing mitigations

very slow very restrictive

insecure lack formal analysis

2 / 21



Previous Spectre Mitigations FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

!Existing mitigations

very slow
efficient

very restrictive

insecure lack formal analysis

2 / 21



Previous Spectre Mitigations FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

!Existing mitigations

very slow
efficient

very restrictive
for all programs

insecure lack formal analysis

2 / 21



Previous Spectre Mitigations FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

!Existing mitigations

very slow
efficient

very restrictive
for all programs

insecure lack formal analysis
fully mechanized security proofs

2 / 21



Security for Arbitrary Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

mitigation

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

compiled

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

3 / 21



Security for Arbitrary Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

mitigation

𝒪1

𝒪2

Leakage in compiled program

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

compiled

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

3 / 21



Security for Arbitrary Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

Leakage in source program

mitigation

𝒪1

𝒪2

Leakage in compiled program

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

compiled

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

3 / 21



Security for Arbitrary Programs FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

mitigation

𝒪1

𝒪2

Relative Security

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

compiled

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

3 / 21



More Efficient and Trustworthy Formally Secure Compilation FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

4 / 21



More Efficient and Trustworthy Formally Secure Compilation FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

more efficient than previous
general mitigations

4 / 21



More Efficient and Trustworthy Formally Secure Compilation FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

more efficient than previous
general mitigations

4 / 21



More Efficient and Trustworthy Formally Secure Compilation FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

𝒪1

𝒪2

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

more efficient than previous
general mitigations

4 / 21



More Efficient and Trustworthy Formally Secure Compilation FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

𝒪1

𝒪2

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

more efficient than previous
general mitigations

more precise models

4 / 21



More Efficient and Trustworthy Formally Secure Compilation FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

𝒪1

𝒪2

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

more efficient than previous
general mitigations

more precise models
all steps fully mechanized
in Rocq

4 / 21



More Efficient and Trustworthy Formally Secure Compilation FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

𝒪1

𝒪2

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

more efficient than previous
general mitigations

CSF 2025
Distinguished Paper Award

more precise models
all steps fully mechanized
in Rocq

4 / 21



Flexible SLH:
Providing Efficient Protections To
All Programs



Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒 < 𝑠𝑖𝑧𝑒(𝚊1) 𝚝𝚑𝚎𝚗

𝚓 ← 𝚊1 [𝚒 ];
𝚡 ← 𝚊2 [𝚓 ]

𝚎𝚕𝚜𝚎

6 / 21



Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋];
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋]

𝚎𝚕𝚜𝚎

• CCT type system:
‣ variables and arrays public or secret

6 / 21



Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋];
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢 ← 𝚊3𝕋[𝚡𝔽];
𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• CCT type system:
‣ variables and arrays public or secret
‣ secret values may not be used as indices

or branch conditions

6 / 21



Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋];
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢 ← 𝚊3𝕋[𝚡𝔽];
𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• CCT type system:
‣ variables and arrays public or secret
‣ secret values may not be used as indices

or branch conditions
• maintain a misspeculation flag

6 / 21



Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋];
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢 ← 𝚊3𝕋[𝚡𝔽];
𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• CCT type system:
‣ variables and arrays public or secret
‣ secret values may not be used as indices

or branch conditions
• maintain a misspeculation flag
‣ updated with constant-time conditionals

6 / 21



Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢 ← 𝚊3𝕋[𝚡𝔽];
𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• CCT type system:
‣ variables and arrays public or secret
‣ secret values may not be used as indices

or branch conditions
• maintain a misspeculation flag
‣ updated with constant-time conditionals

• mask reads to public variables

6 / 21



Previous Work: Selective SLH (Shivakumar et al. 2023) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢 ← 𝚊3𝕋[𝚡𝔽];
𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• CCT type system:
‣ variables and arrays public or secret
‣ secret values may not be used as indices

or branch conditions
• maintain a misspeculation flag
‣ updated with constant-time conditionals

• mask reads to public variables
‣ secret variables can not leak anyway

6 / 21



Flexible SLH: Removing Restrictions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢 ← 𝚊3𝕋[𝚡𝔽];
𝚒𝚏 𝚢 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• Static Information-Flow Analysis

7 / 21



Flexible SLH: Removing Restrictions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢 ← 𝚊3𝕋[𝚡𝔽];
𝚒𝚏 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• Static Information-Flow Analysis
‣ annotates expressions with labels

7 / 21



Flexible SLH: Removing Restrictions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢𝔽 ← 𝚊3𝕋[𝚡𝔽];
𝚒𝚏 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• Static Information-Flow Analysis
‣ annotates expressions with labels
‣ does not prevent the use of secrets

7 / 21



Flexible SLH: Removing Restrictions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢𝔽 ← 𝚊3𝕋[𝚡𝔽];
𝚒𝚏 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• Static Information-Flow Analysis
‣ annotates expressions with labels
‣ does not prevent the use of secrets
‣ accepts all programs

7 / 21



Flexible SLH: Removing Restrictions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢𝔽 ← 𝚊3𝕋[𝚡𝔽];
𝚒𝚏 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• Static Information-Flow Analysis
‣ annotates expressions with labels
‣ does not prevent the use of secrets
‣ accepts all programs

• More masking required:

7 / 21



Flexible SLH: Removing Restrictions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢𝔽 ← 𝚊3𝕋[𝚋 ? 0 : 𝚡];
𝚒𝚏 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• Static Information-Flow Analysis
‣ annotates expressions with labels
‣ does not prevent the use of secrets
‣ accepts all programs

• More masking required:
‣ secret indices

7 / 21



Flexible SLH: Removing Restrictions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝚒𝚏 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 𝚝𝚑𝚎𝚗

𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 𝚋 : 1;

𝚓𝕋 ← 𝚊1𝕋[𝚒𝕋]; 𝚓𝕋 ≔ 𝚋 ? 0 : 𝚓𝕋;
𝚡𝔽 ← 𝚊2𝔽[𝚓𝕋];
𝚢𝔽 ← 𝚊3𝕋[𝚋 ? 0 : 𝚡];
𝚒𝚏 𝚋 && 𝚢𝔽 < 10 𝚝𝚑𝚎𝚗 … 𝚎𝚕𝚜𝚎 …

𝚎𝚕𝚜𝚎
𝚋 ≔ 𝚒𝕋 < 𝑠𝑖𝑧𝑒(𝚊1)𝕋 ? 1 : 𝚋

• Static Information-Flow Analysis
‣ annotates expressions with labels
‣ does not prevent the use of secrets
‣ accepts all programs

• More masking required:
‣ secret indices
‣ secret branch conditions

7 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

FvSLH∀

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

8 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

FvSLH∀

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

8 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

8 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Ideal semantics:

8 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Ideal semantics:
• speculative execution

8 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Ideal semantics:
• speculative execution
• with masking in semantics

8 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Ideal semantics:
• speculative execution
• with masking in semantics
‣ matches behaviour of compiled program

8 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Backwards
Compiler
Correctness

Backwards
Compiler
Correctness

Ideal semantics:
• speculative execution
• with masking in semantics
‣ matches behaviour of compiled program

8 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Backwards
Compiler
Correctness

Backwards
Compiler
Correctness

Ideal semantics:
• speculative execution
• with masking in semantics
‣ matches behaviour of compiled program

• with dynamic information-flow tracking

8 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Backwards
Compiler
Correctness

Backwards
Compiler
Correctness

Ideal semantics:
• speculative execution
• with masking in semantics
‣ matches behaviour of compiled program

• with dynamic information-flow tracking

Relative Security of ideal semantics:

8 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Backwards
Compiler
Correctness

Backwards
Compiler
Correctness

Ideal semantics:
• speculative execution
• with masking in semantics
‣ matches behaviour of compiled program

• with dynamic information-flow tracking

Relative Security of ideal semantics:
⚠ depends on correctness of annotations

8 / 21



Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution

9 / 21



Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution
• Annotations are produced by static analysis on the initial program

9 / 21



Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution
• Annotations are produced by static analysis on the initial program
‣ not suitable for preservation

9 / 21



Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution
• Annotations are produced by static analysis on the initial program
‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

9 / 21



Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution
• Annotations are produced by static analysis on the initial program
‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

9 / 21



Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution
• Annotations are produced by static analysis on the initial program
‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated command

9 / 21



Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution
• Annotations are produced by static analysis on the initial program
‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated commandinitial labeling

9 / 21



Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution
• Annotations are produced by static analysis on the initial program
‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated commandinitial labeling

final labeling

9 / 21



Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution
• Annotations are produced by static analysis on the initial program
‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated commandinitial labeling

final labeling

Lemma

The information-flow analysis produces well-
labeled programs.

⟪𝑐⟫𝑃,𝑃𝐴
𝑝𝑐 = (𝑐, 𝑃′, 𝑃𝐴′) ⇒ 𝑃, 𝑃𝐴 ⇝ 𝑃′, 𝑃𝐴′ ⊢𝑝𝑐 𝑐

9 / 21



Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution
• Annotations are produced by static analysis on the initial program
‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated commandinitial labeling

final labeling

Lemma

The information-flow analysis produces well-
labeled programs.

⟪𝑐⟫𝑃,𝑃𝐴
𝑝𝑐 = (𝑐, 𝑃′, 𝑃𝐴′) ⇒ 𝑃, 𝑃𝐴 ⇝ 𝑃′, 𝑃𝐴′ ⊢𝑝𝑐 𝑐

Lemma

Ideal execution preserves well-labeledness.

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐 ⇒

⟨𝑐, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →𝒪

𝒟 i ⟨𝑐′, 𝜌, 𝜇, 𝑏, 𝑝𝑐′, 𝑃′, 𝑃𝐴′⟩ ⇒

𝑃′, 𝑃𝐴′ ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐′ 𝑐′

9 / 21



Well-Labeledness FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Relative security requires correct annotations during execution
• Annotations are produced by static analysis on the initial program
‣ not suitable for preservation

• Introduce a typing-like well-labeledness predicate:

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐

annotated commandinitial labeling

final labeling

Lemma

The information-flow analysis produces well-
labeled programs.

⟪𝑐⟫𝑃,𝑃𝐴
𝑝𝑐 = (𝑐, 𝑃′, 𝑃𝐴′) ⇒ 𝑃, 𝑃𝐴 ⇝ 𝑃′, 𝑃𝐴′ ⊢𝑝𝑐 𝑐

Lemma

Ideal execution preserves well-labeledness.

𝑃, 𝑃𝐴 ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐 𝑐 ⇒

⟨𝑐, 𝜌, 𝜇, 𝑏, 𝑝𝑐, 𝑃, 𝑃𝐴⟩ →𝒪

𝒟 i ⟨𝑐′, 𝜌, 𝜇, 𝑏, 𝑝𝑐′, 𝑃′, 𝑃𝐴′⟩ ⇒

𝑃′, 𝑃𝐴′ ⇝ 𝑃″, 𝑃𝐴″ ⊢𝑝𝑐′ 𝑐′

9 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

10 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Unwinding

During misspeculation:

10 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Unwinding

During misspeculation:
• all secret values are masked

10 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Unwinding

During misspeculation:
• all secret values are masked
• all public values are equal in both executions

10 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Unwinding

During misspeculation:
• all secret values are masked
• all public values are equal in both executions

Same behaviour before misspeculation

10 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

Backwards
Compiler
Correctness

Backwards
Compiler
Correctness

Unwinding

During misspeculation:
• all secret values are masked
• all public values are equal in both executions

Same behaviour before misspeculation

10 / 21



Proving Relative Security FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒪2

information
flow
analysis

masking

𝒪′
1

𝒟

𝒪′
2

𝒟

𝒪′
1

𝒟

𝒪′
2

𝒟

sequential

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

speculative

⟨⦅𝑐⦆, 𝑠1, 𝕗⟩

⟨⦅𝑐⦆, 𝑠2, 𝕗⟩

ideal

⟨𝑐, 𝑠1, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

⟨𝑐, 𝑠2, 𝕗, 
𝕋, 𝑃, 𝑃𝐴⟩

10 / 21



Flexible SLH: Recap FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• secure: fully mechanized relative security proof in Rocq

11 / 21



Flexible SLH: Recap FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• secure: fully mechanized relative security proof in Rocq
• general: accepts all programs

11 / 21



Flexible SLH: Recap FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• secure: fully mechanized relative security proof in Rocq
• general: accepts all programs
• efficient: only inserts protections where needed

11 / 21



Flexible SLH: Recap FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• secure: fully mechanized relative security proof in Rocq
• general: accepts all programs
• efficient: only inserts protections where needed

• no real-world implementation yet

11 / 21



More Realistic Models of
Speculation



Translation to More Realistic Models FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

13 / 21



Translation to More Realistic Models FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

more precise models

13 / 21



Translation to More Realistic Models FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

𝒪1

𝒪2

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩
more precise models

13 / 21



Forward-Only Semantics to Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

The model for the FSLH security proof is very abstract:

14 / 21



Forward-Only Semantics to Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

The model for the FSLH security proof is very abstract:
• Directives control branch prediction

𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩

⟨𝑐𝑏′ , 𝜌, 𝜇, 𝑏⟩

⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋⟩

14 / 21



Forward-Only Semantics to Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

The model for the FSLH security proof is very abstract:
• Directives control branch prediction

𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑠𝑡𝑒𝑝

𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩

⟨𝑐𝑏′ , 𝜌, 𝜇, 𝑏⟩

⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋⟩

14 / 21



Forward-Only Semantics to Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

The model for the FSLH security proof is very abstract:
• Directives control branch prediction

𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑠𝑡𝑒𝑝

𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑓𝑜𝑟𝑐𝑒

⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩

⟨𝑐𝑏′ , 𝜌, 𝜇, 𝑏⟩

⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋⟩

14 / 21



Forward-Only Semantics to Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

The model for the FSLH security proof is very abstract:
• Directives control branch prediction
• Attacker chooses location for out-of-bounds accesses

14 / 21



Forward-Only Semantics to Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

The model for the FSLH security proof is very abstract:
• Directives control branch prediction
• Attacker chooses location for out-of-bounds accesses

𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑟𝑒𝑎𝑑 𝚊 𝑖
⟨𝚡 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝑏⟩

⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝚊[𝑖]]𝜌, 𝜇, 𝑏⟩

⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝚋[𝑗]]𝜌, 𝜇, 𝕋⟩

14 / 21



Forward-Only Semantics to Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

The model for the FSLH security proof is very abstract:
• Directives control branch prediction
• Attacker chooses location for out-of-bounds accesses

𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑠𝑡𝑒𝑝

𝑟𝑒𝑎𝑑 𝚊 𝑖
⟨𝚡 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝑏⟩

⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝚊[𝑖]]𝜌, 𝜇, 𝑏⟩

⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝚋[𝑗]]𝜌, 𝜇, 𝕋⟩

in-bounds

14 / 21



Forward-Only Semantics to Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

The model for the FSLH security proof is very abstract:
• Directives control branch prediction
• Attacker chooses location for out-of-bounds accesses

𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑠𝑡𝑒𝑝

𝑟𝑒𝑎𝑑 𝚊 𝑖
𝑙𝑜𝑎𝑑 𝚋 𝑗

⟨𝚡 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝑏⟩

⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝚊[𝑖]]𝜌, 𝜇, 𝑏⟩

⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝚋[𝑗]]𝜌, 𝜇, 𝕋⟩

in-bounds

out-of-bounds
misspeculating

14 / 21



Forward-Only Semantics to Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

The model for the FSLH security proof is very abstract:
• Directives control branch prediction
• Attacker chooses location for out-of-bounds accesses
• Forward-only: No rollback mechanism, cannot leave misspeculation

𝑟𝑒𝑎𝑑 𝚊 𝑖

𝑠𝑡𝑒𝑝

𝑟𝑒𝑎𝑑 𝚊 𝑖
𝑙𝑜𝑎𝑑 𝚋 𝑗

⟨𝚡 ← 𝚊[𝑖𝑒], 𝜌, 𝜇, 𝑏⟩

⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝚊[𝑖]]𝜌, 𝜇, 𝑏⟩

⟨𝚜𝚔𝚒𝚙, [𝚇 ↦ 𝚋[𝑗]]𝜌, 𝜇, 𝕋⟩

in-bounds

out-of-bounds
misspeculating

14 / 21



Adding Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝑏′ = ⟦𝑏𝑒⟧𝜌Rb_If_Force

⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩ →→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑓𝑜𝑟𝑐𝑒 rb ⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋⟩

15 / 21



Adding Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝑏′ = ⟦𝑏𝑒⟧𝜌Rb_If_Force

⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩
⋮

→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑓𝑜𝑟𝑐𝑒 rb ⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋⟩
⋮

15 / 21



Adding Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝑏′ = ⟦𝑏𝑒⟧𝜌Rb_If_Force

⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩
⋮

→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑓𝑜𝑟𝑐𝑒 rb

⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋⟩
⟨𝑐𝑏′ , 𝜌, 𝜇⟩

⋮

15 / 21



Adding Rollbacks FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝑏′ = ⟦𝑏𝑒⟧𝜌Rb_If_Force

⟨𝚒𝚏 𝑏𝑒 𝚝𝚑𝚎𝚗 𝑐𝕋 𝚎𝚕𝚜𝚎 𝑐𝔽, 𝜌, 𝜇, 𝑏⟩
⋮

→→→→→→𝑏𝑟𝑎𝑛𝑐ℎ 𝑏′

𝑓𝑜𝑟𝑐𝑒 rb

⟨𝑐¬𝑏′ , 𝜌, 𝜇, 𝕋⟩
⟨𝑐𝑏′ , 𝜌, 𝜇⟩

⋮

Rb_Rollback ⟨𝑐, 𝜌, 𝜇, 𝑏⟩
⟨𝑐′, 𝜌′, 𝜇′, 𝑏′⟩

⋮
→→→→→𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘 rb ⟨𝑐′, 𝜌′, 𝜇′, 𝑏′⟩
⋮

15 / 21



Rollbacks Are Not Needed (Barthe et al. 2021) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Equal leakage in forward-only semantics ⇒ equal leakage with rollbacks?

16 / 21



Rollbacks Are Not Needed (Barthe et al. 2021) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Equal leakage in forward-only semantics ⇒ equal leakage with rollbacks?
• Different leakage with rollbacks ⇒ different forward-only leakage

16 / 21



Rollbacks Are Not Needed (Barthe et al. 2021) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Equal leakage in forward-only semantics ⇒ equal leakage with rollbacks?
• Different leakage with rollbacks ⇒ different forward-only leakage

𝑓𝑜𝑟𝑐𝑒 𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘

⟨𝚒𝚏 ⋅ 𝚝𝚑𝚎𝚗 ⋅ 𝚎𝚕𝚜𝚎 ⋅ , 𝜌, 𝜇, 𝔽⟩

⟨𝑐¬𝑏, 𝜌, 𝜇, 𝕋⟩

⟨𝑐𝑏, 𝜌, 𝜇, 𝔽⟩

⟨𝑐′, 𝜌′, 𝜇′, 𝕋⟩

16 / 21



Rollbacks Are Not Needed (Barthe et al. 2021) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Equal leakage in forward-only semantics ⇒ equal leakage with rollbacks?
• Different leakage with rollbacks ⇒ different forward-only leakage

𝑓𝑜𝑟𝑐𝑒

leak here

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘

⟨𝚒𝚏 ⋅ 𝚝𝚑𝚎𝚗 ⋅ 𝚎𝚕𝚜𝚎 ⋅ , 𝜌, 𝜇, 𝔽⟩

⟨𝑐¬𝑏, 𝜌, 𝜇, 𝕋⟩

⟨𝑐𝑏, 𝜌, 𝜇, 𝔽⟩

⟨𝑐′, 𝜌′, 𝜇′, 𝕋⟩

16 / 21



Rollbacks Are Not Needed (Barthe et al. 2021) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Equal leakage in forward-only semantics ⇒ equal leakage with rollbacks?
• Different leakage with rollbacks ⇒ different forward-only leakage

𝑓𝑜𝑟𝑐𝑒

leak here

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘

⟨𝚒𝚏 ⋅ 𝚝𝚑𝚎𝚗 ⋅ 𝚎𝚕𝚜𝚎 ⋅ , 𝜌, 𝜇, 𝔽⟩

⟨𝑐¬𝑏, 𝜌, 𝜇, 𝕋⟩

⟨𝑐𝑏, 𝜌, 𝜇, 𝔽⟩

⟨𝑐′, 𝜌′, 𝜇′, 𝕋⟩

16 / 21



Rollbacks Are Not Needed (Barthe et al. 2021) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Equal leakage in forward-only semantics ⇒ equal leakage with rollbacks?
• Different leakage with rollbacks ⇒ different forward-only leakage

𝑓𝑜𝑟𝑐𝑒

leak here

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘

⟨𝚒𝚏 ⋅ 𝚝𝚑𝚎𝚗 ⋅ 𝚎𝚕𝚜𝚎 ⋅ , 𝜌, 𝜇, 𝔽⟩

⟨𝑐¬𝑏, 𝜌, 𝜇, 𝕋⟩

⟨𝑐𝑏, 𝜌, 𝜇, 𝔽⟩

⟨𝑐′, 𝜌′, 𝜇′, 𝕋⟩

16 / 21



Rollbacks Are Not Needed (Barthe et al. 2021) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Equal leakage in forward-only semantics ⇒ equal leakage with rollbacks?
• Different leakage with rollbacks ⇒ different forward-only leakage

𝑓𝑜𝑟𝑐𝑒

leak here

⟨𝚒𝚏 ⋅ 𝚝𝚑𝚎𝚗 ⋅ 𝚎𝚕𝚜𝚎 ⋅ , 𝜌, 𝜇, 𝔽⟩

⟨𝑐¬𝑏, 𝜌, 𝜇, 𝕋⟩ ⟨𝑐′, 𝜌′, 𝜇′, 𝕋⟩

16 / 21



Rollbacks Are Not Needed (Barthe et al. 2021) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Equal leakage in forward-only semantics ⇒ equal leakage with rollbacks?
• Different leakage with rollbacks ⇒ different forward-only leakage

𝑓𝑜𝑟𝑐𝑒

leak here

𝑟𝑜𝑙𝑙𝑏𝑎𝑐𝑘

⟨𝚒𝚏 ⋅ 𝚝𝚑𝚎𝚗 ⋅ 𝚎𝚕𝚜𝚎 ⋅ , 𝜌, 𝜇, 𝔽⟩

⟨𝑐¬𝑏, 𝜌, 𝜇, 𝕋⟩

⟨𝑐𝑏, 𝜌, 𝜇, 𝔽⟩

⟨𝑐′, 𝜌′, 𝜇′, 𝕋⟩

16 / 21



Rollbacks Are Not Needed (Barthe et al. 2021) FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Equal leakage in forward-only semantics ⇒ equal leakage with rollbacks?
• Different leakage with rollbacks ⇒ different forward-only leakage

leak here

𝑠𝑡𝑒𝑝
⟨𝚒𝚏 ⋅ 𝚝𝚑𝚎𝚗 ⋅ 𝚎𝚕𝚜𝚎 ⋅ , 𝜌, 𝜇, 𝔽⟩ ⟨𝑐𝑏, 𝜌, 𝜇, 𝔽⟩

16 / 21



Always-Mispredict Semantics FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• unlimited misspeculation

17 / 21



Always-Mispredict Semantics FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• unlimited misspeculation • limited speculation window

17 / 21



Always-Mispredict Semantics FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• unlimited misspeculation
• attacker-chosen memory locations

• limited speculation window

17 / 21



Always-Mispredict Semantics FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• unlimited misspeculation
• attacker-chosen memory locations

• limited speculation window
• flat memory layout

17 / 21



Always-Mispredict Semantics FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• unlimited misspeculation
• attacker-chosen memory locations
• attacker-controlled misspeculation

• limited speculation window
• flat memory layout

17 / 21



Always-Mispredict Semantics FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• unlimited misspeculation
• attacker-chosen memory locations
• attacker-controlled misspeculation

• limited speculation window
• flat memory layout
• always mispredict

17 / 21



Always-Mispredict Semantics FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• unlimited misspeculation
• attacker-chosen memory locations
• attacker-controlled misspeculation

• limited speculation window
• flat memory layout
• always mispredict

How is this more realistic?

17 / 21



Always-Mispredict Semantics FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• unlimited misspeculation
• attacker-chosen memory locations
• attacker-controlled misspeculation

• limited speculation window
• flat memory layout
• always mispredict

How is this more realistic?
• proposed for use in Hardware-Software Contracts

(Guarnieri et al. 2021)

17 / 21



Always-Mispredict Semantics FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• unlimited misspeculation
• attacker-chosen memory locations
• attacker-controlled misspeculation

• limited speculation window
• flat memory layout
• always mispredict

How is this more realistic?
• proposed for use in Hardware-Software Contracts

(Guarnieri et al. 2021)
‣ idea: vendor-guaranteed leakage model

17 / 21



From Directives to Always-Mispredict FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒟

𝒪2

𝒟

𝒪1

𝒪2

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

18 / 21



From Directives to Always-Mispredict FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒟

𝒪2

𝒟

𝒪1

𝒪2

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩
out-of-bounds accesses only
in misspeculating execution

18 / 21



From Directives to Always-Mispredict FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒟

𝒪2

𝒟

𝒪1

𝒪2

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩
out-of-bounds accesses only
in misspeculating execution

flattened memory layout
independent of speculation

18 / 21



From Directives to Always-Mispredict FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒟

𝒪2

𝒟

𝒪1

𝒪2

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩
out-of-bounds accesses only
in misspeculating execution

flattened memory layout
independent of speculation

must assume sequential execution
does not get stuck!

18 / 21



From Directives to Always-Mispredict FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒟

𝒪2

𝒟

𝒪1

𝒪2

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

requires equal directives

18 / 21



From Directives to Always-Mispredict FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒟

𝒪2

𝒟

𝒪1

𝒪2

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

requires equal directives
• same out-of-bounds index must

result in same location

18 / 21



From Directives to Always-Mispredict FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒟

𝒪2

𝒟

𝒪1

𝒪2

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

requires equal directives

memory access:
One might be in-bounds
and the other out-of-bounds

18 / 21



From Directives to Always-Mispredict FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒟

𝒪2

𝒟

𝒪1

𝒪2

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

requires equal directives

memory access:
One might be in-bounds
and the other out-of-bounds

no equality assumption
when different directives are used

18 / 21



From Directives to Always-Mispredict FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪1

𝒟

𝒪2

𝒟

𝒪1

𝒪2

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

requires equal directives

memory access:
One might be in-bounds
and the other out-of-bounds

one directive must allow
both in-bounds and out-of-bounds access

18 / 21



From Directives to Always-Mispredict: Lessons Learned FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Models can make implicit safety assumptions

19 / 21



From Directives to Always-Mispredict: Lessons Learned FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Models can make implicit safety assumptions
‣ undefined behaviour might be intentionally out-of-scope

19 / 21



From Directives to Always-Mispredict: Lessons Learned FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Models can make implicit safety assumptions
‣ undefined behaviour might be intentionally out-of-scope
‣ but this should be explicit!

19 / 21



From Directives to Always-Mispredict: Lessons Learned FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Models can make implicit safety assumptions
‣ undefined behaviour might be intentionally out-of-scope
‣ but this should be explicit!

• Directive-based models must have a directive allowing both in-bounds and out-of-
bounds access

19 / 21



From Directives to Always-Mispredict: Lessons Learned FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Models can make implicit safety assumptions
‣ undefined behaviour might be intentionally out-of-scope
‣ but this should be explicit!

• Directive-based models must have a directive allowing both in-bounds and out-of-
bounds access
‣ Easy to miss! Affects proofs of Selective and Flexible SLH

19 / 21



Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

Efficient Mitigation for all programs

20 / 21



Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

Efficient Mitigation for all programs

Formal relative security
proof in Rocq

20 / 21



Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

𝒪1

𝒪2

𝒪1

𝒪2

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

Efficient Mitigation for all programs

Formal relative security
proof in Rocq

Proofs for more precise
models (also in Rocq)

20 / 21



Conclusions FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

𝒪′
1

𝒪′
2

FvSLH∀

𝒪1

𝒪2

𝒪1

𝒪2

𝒪1

𝒪2

𝒪1

𝒪2

source

⟨𝑐, 𝑠1⟩

⟨𝑐, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

forward-only

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

with rollbacks

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

always-mispredict

⟨⦅𝑐⦆, 𝑠1⟩

⟨⦅𝑐⦆, 𝑠2⟩

Efficient Mitigation for all programs

Formal relative security
proof in Rocq

Proofs for more precise
models (also in Rocq)

work needed
to connect here

20 / 21



Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Real-world implementation of Flexible SLH

21 / 21



Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Real-world implementation of Flexible SLH
‣ open questions: when during compilation to perform analysis?

21 / 21



Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Real-world implementation of Flexible SLH
‣ open questions: when during compilation to perform analysis?

• Mitigations for other SPECTRE variants

21 / 21



Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Real-world implementation of Flexible SLH
‣ open questions: when during compilation to perform analysis?

• Mitigations for other SPECTRE variants
‣ e.g. prediction of indirect branch targets and return addresses

21 / 21



Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Real-world implementation of Flexible SLH
‣ open questions: when during compilation to perform analysis?

• Mitigations for other SPECTRE variants
‣ e.g. prediction of indirect branch targets and return addresses

• Ever more accurate models

21 / 21



Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Real-world implementation of Flexible SLH
‣ open questions: when during compilation to perform analysis?

• Mitigations for other SPECTRE variants
‣ e.g. prediction of indirect branch targets and return addresses

• Ever more accurate models
‣ Hardware-Software Contracts?

21 / 21



Future Work FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

• Real-world implementation of Flexible SLH
‣ open questions: when during compilation to perform analysis?

• Mitigations for other SPECTRE variants
‣ e.g. prediction of indirect branch targets and return addresses

• Ever more accurate models
‣ Hardware-Software Contracts?
‣ dynamic attackers?

21 / 21



Bibliography FOR SECURITY AND PRIVACY
MAX PLANCK INSTITUTE

Barthe, Gilles, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao, Tiago
Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. 2021. “High-Assurance
Cryptography in the Spectre Era”. In 42nd IEEE Symposium on Security and Privacy, SP,
1884–1901. IEEE. https://doi.org/10.1109/SP40001.2021.00046.

Guarnieri, Marco, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. “Hardware-Software
Contracts for Secure Speculation”. In 42nd IEEE Symposium on Security and Privacy, SP,
1868–83. IEEE. https://doi.org/10.1109/SP40001.2021.00036.

Shivakumar, Basavesh Ammanaghatta, Jack Barnes, Gilles Barthe, Sunjay Cauligi,
Chitchanok Chuengsatiansup, Daniel Genkin, Sioli O'Connell, Peter Schwabe, Rui Qi
Sim, and Yuval Yarom. 2023. “Spectre Declassified: Reading from the Right Place
at the Wrong Time”. In 44th IEEE Symposium on Security and Privacy, SP, 1753–70. IEEE.
https://doi.org/10.1109/SP46215.2023.10179355.

22 / 21

https://doi.org/10.1109/SP40001.2021.00046
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP46215.2023.10179355

	Spectre (v1)
	Previous Spectre Mitigations
	Security for Arbitrary Programs
	More Efficient and Trustworthy Formally Secure Compilation
	Flexible SLH: Providing Efficient Protections To All Programs
	Previous Work: Selective SLH
	Flexible SLH: Removing Restrictions
	Proving Relative Security
	Well-Labeledness
	Proving Relative Security
	Flexible SLH: Recap

	More Realistic Models of Speculation
	Translation to More Realistic Models
	Forward-Only Semantics to Rollbacks
	Adding Rollbacks
	Rollbacks Are Not Needed
	Always-Mispredict Semantics
	From Directives to Always-Mispredict
	From Directives to Always-Mispredict: Lessons Learned
	Conclusions
	Future Work
	Bibliography


