Towards More Efficient and Trustworthy
Formally Secure Compilation Against wax pLanck insTiTuTe (6
Speculative Side-Channel Attacks

Jonathan Baumann

Supervised by Catalin Hritcu Formally Verified Security group, MPI-SP, Germany

S pe ctre (V 1) R

i ----- e

if i < size(a;) then
J < ayli];

X ¢ ag|j]

else

1/21

S pe ctre (V 1) R

i ----- e

if i < size(a;) then

§ ¢ agli]; _

X ¢ ag|j]

else

1/21

S pe ctre (V 1) R

i ----- e

if i < size(a;) then

j < aq[i];
S

else

1/21

S pe ctre (V 1) R

i ----- e

if i < size(a;) then
J<e-aﬂﬁ

\

else

1/21

S pe ctre (V 1) R

leti—4_ [..]lan[O]]fayTa]] ey 2] e]I [Secret] ..

N

if i < size(a;) then

j < agli];

X ¢ ag|j]

else

1/21

S pe ctre (V 1) R

leti—4_ [..]lan[O]]fayTa]] ey 2] e]I [Secret] ..

N

if i < size(a;) then
////”' J < ayli];

X ¢ ag|j]

speculates by
predicting branch
else

1/21

S pe ctre (V 1) R

leti =4 -----

1f i <Zszze

////”' j < ayi];

speculates by]
2

predicting branch
else

1/21

S pe ctre (V 1) R

leti =4 -----

1f 1< szze

/] <_31[1

X ¢ ag|j]

else \m

speculates by
predicting branch

1/21

PreVIOUS SpeCtre M|t|gat|0n3 MAX PLANCK INSTITUTE (147"

FOR SECURITY AND PRIVACY L&

Existing mitigations

2/21

PreVIOUS SpeCtre M|t|gat|0n3 MAX PLANCK INSTITUTE (147"

FOR SECURITY AND PRIVACY L&

very slow

AN

Existing mitigations

2/21

PreVIOUS SpeCtre M|t|gat|0n3 MAX PLANCK INSTITUTE (147"

FOR SECURITY AND PRIVACY L&

very slow very restrictive

AN /

Existing mitigations

2/21

PreVIOUS SpeCtre M|t|gat|0n3 MAX PLANCK INSTITUTE (147"

FOR SECURITY AND PRIVACY L&

very slow very restrictive

/

Existing mitigations

insecure

2/21

PreVIOUS SpeCtre M|t|gat|0n3 MAX PLANCK INSTITUTE (147"

FOR SECURITY AND PRIVACY L&

very slow very restrictive
Existing mitigations

insecure lack formal analysis

2/21

PreVIOUS SpeCtre M|t|gat|0n3 MAX PLANCK INSTITUTE (147"

FOR SECURITY AND PRIVACY L&

very slow very restrictive

efficient \ /

Existing mitigations

' N\

insecure lack formal analysis

2/21

PreVIOUS SpeCtre M|t|gat|0n3 MAX PLANCK INSTITUTE (147"

FOR SECURITY AND PRIVACY L&

very slow very restrictive

efficient \ / for all programs

Existing mitigations

' N\

insecure lack formal analysis

2/21

PreVIOUS SpeCtre M|t|gat|0n3 MAX PLANCK INSTITUTE (147"

FOR SECURITY AND PRIVACY L&

very slow very restrictive

efficient \ / for all programs

Existing mitigations

' N\

insecure lack formal analysis
fully mechanized security proofs

2/21

FOR SECURITY AND PRIVACY L&

Security for Arbitrary Programs

<Ca 32)

source

<C7 81>

mitigation

((e), s2)

compiled

(c), s1)

3/21

Security for Arbitrary Programs

FOR SECURITY AND PRIVACY L&

<Ca 32)

source

<C7 81>

mitigation

O,

((c), s2) 7 >
compiled
< o Leakage in compiled program
<(IC]), 81> ’

7

3/21

Security for Arbitrary Programs

FOR SECURITY AND PRIVACY @

0
<Ca SZ) > ’
source
0/ Leakage in source program
<C7 31> - ’

mitigation
(92
{(c), s2) /’ 4
compiled /y//// . .
i 9/ Leakage in compiled program
<(IC]), 81> - ?

3/21

FOR SECURITY AND PRIVACY L&

Security for Arbitrary Programs

<Ca 32)

source

N

<C7 81>

Relative Security

O,
((c), s2) .
compiled /
)

(c), s1) Z

mitigation

3/21

More Efficient and Trustworthy Formally Secure C

FOR SECURITY AND PRIVACY L&

03
<C, 32> /
source ¢

(C, 51>

FvSLHY 0,

((c), s2) ’
forward-only /
((e), 51) ,

4/ 21

More Efficient and Trustworthy Formally Secure

FOR SECURITY AND PRIVACY L&

/ <(ICI)7 82> /I
more efficient than previous | forwercreny /

o e . <(ICD> 51>
general mitigations

4/ 21

More Efficient and Trustworthy Formally Secure

FOR SECURITY AND PRIVACY L&

oy

V2]

v
\~&

source ’

<Ca 51> 02/
/ FvSLHY o,
<(ICI)7 82> .
: . forward-only \f/

more efficient than previous o o

general mitigations |
02
{(e), 52) 7
with rollbacks /
{(e); s1) -

4/ 21

More Efficient and Trustworthy Formally Secure

FOR SECURITY AND PRIVACY @

oy

V2]

v
\~&

b
source ’
A

<Ca 51>
FVSLH" o,
/ <(ICI)7 82> /
more efficient than previous o f‘:rward"’”'y i

general mitigations

((e), 55)

with rollbacks /!
o
((e), 1) .

N

((e), 55)

always-mispredict

{(e), s

\\

4/ 21

More Efficient and Trustworthy Formally Secure

Vi
FOR SECURITY AND PRIVACY i@

0
<C, 52) /
source ’

/ <(ICI)7 82>
(9/

more efficient than previous ey
general mitigations

(e, 51)

/ with rollbacks
s1)
\ ((e), 52)

always-mispredict

{(e), s

more precise models

7

o
(0 23— /0
//

4/ 21

More Efficient and Trustworthy Formally Sec

GE 5
FOR SECURITY AND PRIVACY &

o
(C, 52) /
(c, 81) 02// >
/ FvSLHY N}
<([C]), 52)
. . forward-only \f/
more efficient than previous s % /\
general mitigations - \
{(e), s5) >
with rollbacks 91/3/ \\
Asn . > all steps fully mechanized
more precise models \ — in Rocq

((e), s9) /
always-mispredict /
{(c), s1) 7 >

4/ 21

FOR SECURITY AND PRIVACY T

More Efficient and Trustworthy Formally Secure" CompilStiORRTT = ing ¢

more efficient than previo
general mitigations

((c), s3) }
with rollbacks \g/ \\
Asﬁ Y > all steps fully mechanized
more precise models < — in Rocq
\ (o) —— :

always-mispredict /
o

((e), 51)

4/ 21

Flexible SLH:
Providing Efficient Protections To
All Programs

FOR SECURITY AND PRIVACY L&

Previous Work: Selective SLH (Shivakumar et al. 2023)

if i < size(a;) then

joay [1];

X ay []

else

6/ 21

Previous Work: Selective SLH (Shivakumar et al. 2023

FOR SECURITY AND PRIVACY L&

if ip < size(a;), then

« CCT type system:

» variables and arrays public or secret
jr < airlin;

Xp < aor|jT]

else

6/ 21

Previous Work: Selective SLH (Shivakumar et al. 20 wax gance wenimure (@

if ip < size(a;), then

« CCT type system:
» variables and arrays public or secret

jr < arplic); » secret values may not be used as indices
Xp < agp[jr; or branch conditions
Y37 [Xp ;
if y H0-threm - else ...
else

b:=ip < size(a;),?1:Db

6/ 21

Previous Work: Selective SLH (Shivakumar et al. 2023)

FOR SECURITY AND PRIVACY L&

if ip < size(a;), then

bimip <size(a), Posli . VPRV

» variables and arrays public or secret

jr < arplic); » secret values may not be used as indices
Xp < agp[jr; or branch conditions
Yt Xy * maintain a misspeculation flag
if y H0-threm - else ...
else

6/ 21

Previous Work: Selective SLH (Shivakumar et al. 2028

FOR SECURITY AND PRIVACY L&

if ip < size(a;), then

bimip <sie(a) Tosl YRR SSEm

» variables and arrays public or secret

< ayrlig); » secret values may not be used as indices

Xp < agp[jr; or branch conditions

Y 4—ar X]; * maintain a misspeculation flag

if y lo-tiem——aTse » updated with constant-time conditionals
else

b:=ip < size(a;),?1:Db

6/ 21

Previous Work: Selective SLH (Shivakumar et al.

FOR SECURITY AND PRIVACY L&

if iy < size(ay), then

« CCT type system:

b:=i; < size(a;).7b:1; , :
T (31)y ’ » variables and arrays public or secret

jr < arp[irljde =020 jg; » secret values may not be used as indices

Xp < agp[jTl; or branch conditions

Y —as [Xp; * maintain a misspeculation flag

if y lo-tiem——aTse » updated with con.stantjtlme conditionals
olse - mask reads to public variables

b:=ip < size(a;),?1:Db

6/ 21

Previous Work: Selective SLH (Shivakumar et al.

FOR SECURITY AND PRIVACY L&

if iy < size(ay), then

« CCT type system:

b:=i; < size(a;).7b:1; , :
T (31)y ’ » variables and arrays public or secret

Jr < arpliz) jr=070:jg; » secret values may not be used as indices

Xp < agp[jr; or branch conditions

Y —as [Xp; * maintain a misspeculation flag

if y lo-tiem——aTse » updated with con.stantjtlme conditionals
olse - mask reads to public variables

b= ip < size(a) 71:b » secret variables can not leak anyway

6/ 21

Flexible SLH: Removing Restrictions

FOR SECURITY AND PRIVACY)

if ip < size(a;), then

b= iy < size(a;),. ?b:1; - Static Information-Flow Analysis
Jr ¢ ayp[igls Jr=170:jq;
Xp < agp|J7];

3T XIF];

if y <30-them . else ...
else
=]) ?21.
b:=ip < size(a;),?1:Db

71721

Flexible SLH: Removing Restrictions

FOR SECURITY AND PRIVACY)

if ip < size(a;), then

b= iy < size(a;),. ?b:1; - Static Information-Flow Analysis

. . . . » annotates expressions with labels
jr < ayplitl; jri=b70: jr; P

Xp < aor|jT);

3T XIF]5

if yee<dO-them .. else ...
else
=]) 21 .
b:=ip < size(a;),?1:Db

71721

Flexible SLH: Removing Restrictions

FOR SECURITY AND PRIVACY)

if ip < size(a;), then

b= iy < size(a;),. ?b:1; - Static Information-Flow Analysis
» annotates expressions with labels

jr < applirl; jri=070: g3
JT IR IT » does not prevent the use of secrets

Xp < aor|jT);

Yr < agr[Xpl;

if yp < 10 then ... else ...
else

b:=ip < size(a;),?1:Db

71721

Flexible SLH: Removing Restrictions

FOR SECURITY AND PRIVACY L&

if ip < size(a;), then

b:=1ip < size(a;), ?b:1; - Static Information-Flow Analysis

» annotates expressions with labels
» does not prevent the use of secrets
» accepts all programs

jr < ayplip; jr=b?0:j;
Xp < aor|jT);

Yr < agr[Xpl;

if yp < 10 then ... else ...
else

b:=ip < size(a;),?1:Db

71721

Flexible SLH: Removing Restrictions

FOR SECURITY AND PRIVACY L&

if iy < size(ay), then

b:=1ip < size(a;), ?b:1; - Static Information-Flow Analysis

» annotates expressions with labels
» does not prevent the use of secrets
» accepts all programs

Yr ¢ agy|xp); * More masking required:
if yp < 10 then ... else ...

else
b:=ip < size(a;),?1:Db

jr < ayplip; jr=b?0:j;

Xp < aor|jT);

71721

Flexible SLH: Removing Restrictions

FOR SECURITY AND PRIVACY L&

if iy < size(ay), then

b:=1ip < size(a;), ?b:1; - Static Information-Flow Analysis

» annotates expressions with labels
» does not prevent the use of secrets
» accepts all programs

- More masking required:
if yp < 10 then ... else ... » secret indices
else

b:=ip < size(a;),?1:Db

jr < ayplip; jr=b?0:j;
Xp < aor|jT);

yp < azp[b?0:x];

71721

Flexible SLH: Removing Restrictions

FOR SECURITY AND PRIVACY i

if iy < size(ay), then

b= iy < size(a;), ?b:1; - Static Information-Flow Analysis

» annotates expressions with labels
» does not prevent the use of secrets
» accepts all programs

- More masking required:
if b&& yr < 10 then ... else ... » secret indices

jr— ayplips jr=b?0:j;
Xp < aor|jT);

yp < asp[b?0:x];

else » secret branch conditions
b:=ip < size(a;),?1:Db

71721

Proving Relative Security

MAX PLANCK INSTITUTE

02
<Ca 32> >
sequential
01
<C, 81> S
FvSLHY
0
<(Icl)7 S9, ﬂ‘> >
’ D
speculative
i O;
(), 51,) >
1 D

8/21

Proving Relative Security LT

02
<Ca S2> >
sequential
O,
(c, 1) >
FvSLHY
Oy
((e), 52, N~
speculative ////
: o,
(c), 1, € >
((c), 51, 1) pe

8/21

Proving Relative Security

sequential

0,

<C’ S2>

Oy

~-

<C, 51>

information

flow
analysis
masking ((c), 89, F)J ;7//
speculative ////
i O
(c), 51, [>
((c), 51, 1) p

\
7

MAX PLANCK INSTITUTE

FOR SECURITY AND PRIVACY @

8/21

Proving Relative Security

B %%
02
<Ca 32> >
sequential
01
<Ca 51> \
information @ s, 0. o,
flow ' ']1‘7 P, PA> D >
analysis
ideal
_7 \f, [F, (9,
€5 ' - X .
T, P, PA) D \ |Ideal semantics:
0
masking (c), 54, F)
i D
speculative
4 O]
((e), 1,) >
1 D

8/21

Proving Relative Security

MAX PLANCK INSTITUTE (({&%"

02
<Ca S2> ’
sequential
o,
<Ca Sl> ’
information (@, 8o, [, 0
flow | T, P, PA) . >
analysis
ideal
<E7 S\I’ [F7 0]/. K > .
T, P, PA) D \ |deal semantics:
- speculative execution
Oy
masking c), so, [
((c), s9, 1) pe
speculative
4 O
(c), 51, 0 >
((c), s1, 1) p

8/21

Proving Relative Security

MAX PLANCK INSTITUTE (({&%"

02
<Ca 82> ’
sequential
O
<Ca Sl> ’
information (@, 8o, [, 0
flow | T, P, PA) . >
analysis
ideal
<E7 '§I’ [F7 0]/. K > .
T, P, PA) D \ |deal semantics:
- speculative execution
O} o . . .
masking (e, 5. 0) with masking in semantics
D
speculative
Y O
(c), 51, F >
((c), 51, 1) p

8/21

Proving Relative Security

MAX PLANCK INSTITUTE ({#%"
FOR SECURITY AND PRIVACY i@

02
<Ca 82> ’
sequential
0,
<Ca 31> ’
information (@, 5, [, @}
flow >
T, P, PA
analysis B PA) D
ideal
<E7 S\I’ [F’ 0:{ \
T, P, PA) D \ Ideal semantics:
- speculative execution
masking (o), 50, B %2« with masking in semantics
y 92 . .
D » matches behaviour of compiled program
speculative
Y 01
((c), 51, € >
1 0) p

8/21

Proving Relative Security

MAX PLANCK INSTITUTE ({#%"
FOR SECURITY AND PRIVACY i@

02
<Ca 82> ’
sequential
O
<Ca 31> ’
information (@, 5, [, !
flow | T, P, PA) | >
analysis
ideal
<E7 8\1’ [F7 0—: \
T, P, PA) S~ |deal semantics:
‘ T : :
22‘;(;;?8 - speculative execution
masking Correctngss || %2« with masking in semantics
112 . 5
D » matches behaviour of compiled program
speculative
Y 01
((c), 51, € 4
1 0) p

8/21

Proving Relative Security wax et anci wermure (&

02
<Ca 82> >
sequential
O
<Ca 31> ’
information (@, s, I, oL
flow | T, P, PA) | >
analysis
ideal
<E7 8\1’ [F7 0—: \
T, P, PA) S~ |deal semantics:
‘ I : :
22‘::;‘;;?8 - speculative execution
Oé . 0 . 0 0
masking Correctngss || g with masking in semantics
- D » matches behaviour of compiled program
speculative
. o; - with dynamic information-flow tracking
<(IC])7 S1y ﬂ:> D ’

8/21

Proving Relative Security T

02
<Ca 32> >
sequential 4///
o s 0 Relative Security of ideal semantics:
Cc, 81 ?
information (@, s, I, oL
flow AL >
T, P, PA 1!
analysis T >\v/ -
ideal 4//7
<E7 8\1’ [F7 01/ \
T, P, PA) S~ |deal semantics:
‘ ™~ . :
gzx‘i’f‘errds - speculative execution
masking | Correctngss || %« with masking in semantics
112 . 5
- D » matches behaviour of compiled program
speculative
. o; - with dynamic information-flow tracking
<(ICI)7 S15 ﬂ‘> D ’

8/21

Proving Relative Security T

02
<Ca 32> >
sequential 4//%
o s 0, Relative Security of ideal semantics:
c, S > .
' A depends on correctness of annotations
information (@, s, I, oL
ﬂOW . T) Pa PA>\ / 11 >
analysis v -
ideal 4//7
<E7 S\I’ [F7 0—: \
T, P, PA) S~ |deal semantics:
‘ I : :
gzx‘i’f‘errds - speculative execution
Oé . 0 . 0 0
masking Correctngss || with masking in semantics |
- D » matches behaviour of compiled program
speculative
. o; - with dynamic information-flow tracking
<(ICI)7 S15 ﬂ‘> ﬂ ’

8/21

Well-Labeledness wax prac s (22

- Relative security requires correct annotations during execution

9/21

Well-Labeledness wax pranok nerirute (7

- Relative security requires correct annotations during execution
- Annotations are produced by static analysis on the initial program

9/21

Well-Labeledness wax pranok nerirute (7

- Relative security requires correct annotations during execution
- Annotations are produced by static analysis on the initial program
» not suitable for preservation

9/21

Well-Labeledness s

- Relative security requires correct annotations during execution

- Annotations are produced by static analysis on the initial program
» not suitable for preservation

* Introduce a typing-like well-labeledness predicate:

9/21

Well-Labeledness s

- Relative security requires correct annotations during execution

- Annotations are produced by static analysis on the initial program
» not suitable for preservation

* Introduce a typing-like well-labeledness predicate:

P,PA~s P',PA" -, ¢

9/21

Well-Labeledness wax pranex msmirure (67

- Relative security requires correct annotations during execution

- Annotations are produced by static analysis on the initial program
» not suitable for preservation

* Introduce a typing-like well-labeledness predicate:

P,PA~s P',PA" -, ¢

AN

annotated command

9/21

Well-Labeledness wax pranex msmirure (67

- Relative security requires correct annotations during execution

- Annotations are produced by static analysis on the initial program
» not suitable for preservation

* Introduce a typing-like well-labeledness predicate:

P,PA~s P',PA" I, ¢

e AN

initial labeling annotated command

9/21

Well-Labeledness wax pranex msmirure (67

- Relative security requires correct annotations during execution

- Annotations are produced by static analysis on the initial program
» not suitable for preservation

* Introduce a typing-like well-labeledness predicate:

P,PA - P’ PA" I, ©
yd X AN

final labeling

initial labeling annotated command

9/21

Wel I'La beled Ness MAX PLANCK INSTITUTE v

FOR SECURITY AND PRIVACY ©

Lemma

The information-flow analysis produces well-
labeled programs.

c)DFPA = (¢, P,PA’) = P,PA s P,PA’' \- ¢
p

pc

9/21

Well-Labeledness wax pLanck nsTiTuTe (67

Lemma

The information-flow analysis produces well-
labeled programs.

cHDPA — (¢ P,PA’) = P,PAw» P ,PA' - ¢
pc

pc
Lemma

|deal execution preserves well-labeledness.
P,PA~» P',PA" -, C —
<Ea P K, ba pc, P7 PA> %)- <?, P, U, b, pCl, P', PA/> =

1

P,PA" » P, PA" b,

9/21

Well-Labeledness wax pLanck nsTiTuTe (67

Lemma

The information-flow analysis produces well-
labeled programs.

cHDPA — (¢ P,PA’) = P,PAw» P ,PA' - ¢
pc

pc
Lemma

|deal execution preserves well-labeledness.
P,PA~» P',PA" |, ¢ =
(€, p, p, b, pe, P, PA) 2, (¢, p, pi, b, pc, P, PA") =

1

P PA' ~» P, PA" v, @

9/21

Proving Relative Security

02
<Ca S2> ’
sequential
O,
<C, 51> ’
information (@, 8o, [, @
flow | T, P, PA) e >
analysis
ideal
(€ s1, 0, 1
T, P, PA) P ’
Oy
masking {(c), s,,) >
’ D
speculative
H 01
((c), 1,) 4
' D

MAX PLANCK INSTITUTE (&%
FOR SECURITY AND PRIVACY i@

10/ 21

Proving Relative Security wax et anci wermure (&

0,
<Ca 82> ’
sequential
o,
<Ca 31> ’
information (T, sy, I, Oy
flow T, P, PA) n
analysis
ideal Unwinding
E) 8\,) [F7 0/ i i i
(€, 81) >/ During misspeculation:
T, P, PA) D
Oy
masking {(c), 59,) ’
’ D
speculative
. vt
((c), s1,) ’
! D

10/ 21

Proving Relative Security T

02
<Ca 82> >
sequential
o,
<Ca Sl> ’
information (@, s, I, 0}
flow >
T, P, PA
analysis B PA) D
ideal Unwinding
¢, sy, [, o5 : . .
@ 51 : >/ During misspeculation:
T, P, PA) 7
- all secret values are masked
Oy
masking c), sy, [»
((c), 59,) pe
speculative
4 O
c), sq, [>
((c), s1, 1) s

10/ 21

Proving Relative Security T

02
<Ca 32> >
sequential
O,
<Ca Sl> ’
information (@, 84, [, O}
flow)
T, P, PA
analysis B PA) D
ideal Unwinding
¢, sy, [, o5 : . .
@ 51 ! >/ During misspeculation:
T, P, PA) 7
- all secret values are masked
o, - all public values are equal in both executions
masking c), sy, [»
{(c), sq,) .
speculative
i O
c), s, [>
((c); 54, [) s

10/ 21

Proving Relative Security T

(C’ 32>

sequential /

Same behaviour before misspeculation

02
01
<Ca Sl> /

information (@, 84, [, O}
flow)
T, P, PA
analysis T >\v/ D
ideal / Unwinding
¢, sy, [, o5 : : .
@ 51 ! >/ During misspeculation:
T, P, PA) -
- all secret values are masked
o, - all public values are equal in both executions
masking c), sy, [»
((c), 52,) p
speculative
. vt
c), s, [>
{(c), 51,) p

10/ 21

Proving Relative Security L

(C’ 32>

sequential /

Same behaviour before misspeculation

02
01
<Ca Sl> /

information (@, 5, [, !
flow | T, P PAY7 | >
analysis v

¢, sy, [, O, : : .
@ 51 | ' During misspeculation:
T, P, PA) 1|
Backwards - all secret values are masked
Compiler o, - all public values are equal in both executions
masking Correctngss |1,) S
D
speculative
. 01
<(ICI)7 S1y ﬂ‘> ’

D 10/ 21

Proving Relative Security

02
<Ca S2> ’
sequential
o,
<C, 51> ’
information (@, 8o, [,)
flow | T, P, PA) e >
analysis
ideal
(€ s1, I, Y
T, P, PA) P ’
O
masking ((c), 89, F)J ;7//
, D
speculative ////
4 01
((c), 1,) 4
' D

MAX PLANCK INSTITUTE ((\¢4"
FOR SECURITY AND PRIVACY L

10/ 21

Flexible SLH: Recap max pLanckineTiTuTe (T

- secure: fully mechanized relative security proof in Rocq

11/ 21

Flexible SLH: Recap max pLanckineTiTuTe (T

- secure: fully mechanized relative security proof in Rocq
* general: accepts all programs

11/ 21

Flexible SLH: Recap max eLanci inerirure (67

- secure: fully mechanized relative security proof in Rocq
* general: accepts all programs
- efficient: only inserts protections where needed

11/ 21

Flexible SLH: Recap max eLanci inerirure (67

secure: fully mechanized relative security proof in Rocq
general: accepts all programs
efficient: only inserts protections where needed

no real-world implementation yet

11/ 21

More Realistic Models of
Speculation

Translation to More Realistic Models B

<C, 32>

source ;
A

7

(C, 51>

FvSLHY 0,

((c), s2) ’
forward-only /
((e), 51) ,

13/ 21

Translation to More Realistic Models B

<C, SQ)

source ;
A

Ns

<Ca 51>

FvSLHY

((e), s9)

forward-only

(e, 51)

0,
7
0,/
0,
((c), s2) 7
||
with rollbacks /
((c), s1) 9/

more precise models

13/ 21

Translation to More Realistic Models B

<C, SQ)

source ;
A

7

<Ca 51>

FvSLHY

<(ICI)7 82>

forward-only

(e, 51)

((e), 55)

7
J 7
7
‘—‘—"’—"”_A’v:Tthrpoacks C?////
//

more precise models

\ (e, 52)

always-mispredict

{(e), s

13/ 21

Forward-Only Semantics to Rollbacks B

The model for the FSLH security proof is very abstract:

14/ 21

Forward-Only Semantics to Rollbacks B

The model for the FSLH security proof is very abstract:
- Directives control branch prediction

, <Cb’7 P, M, b>
(if be then cy else cp, p, U, b)
<C—|b’7 Py My T)

14/ 21

Forward-Only Semantics to Rollbacks B

The model for the FSLH security proof is very abstract:
- Directives control branch prediction

, <Cb’7 P, M, b>
step
(if be then cy else cp, p, U, b)
<C—|b’7 Py [y T)

14/ 21

Forward-Only Semantics to Rollbacks B

The model for the FSLH security proof is very abstract:
- Directives control branch prediction

, <Cb’7 P K, b>
step
(if be then cy else cp, p, U, b)
b?"anc/z b’
fOTCe
<C—|b’7 Py My T)

14/ 21

Forward-Only Semantics to Rollbacks B

The model for the FSLH security proof is very abstract:
- Directives control branch prediction
- Attacker chooses location for out-of-bounds accesses

14/ 21

Forward-Only Semantics to Rollbacks Mo i

The model for the FSLH security proof is very abstract:
- Directives control branch prediction
- Attacker chooses location for out-of-bounds accesses

(skip, [X = alt]]p, u, b)

%

(x < aliel, p, p, b)

(skip, [X = b[j]]p, u, T)

14/ 21

Forward-Only Semantics to Rollbacks Mo i

The model for the FSLH security proof is very abstract:
- Directives control branch prediction
- Attacker chooses location for out-of-bounds accesses

(skip, [X = alt]]p, u, b)

. al
in-bounds read

step
(x < alie], p, p,)

(skip, [X = b[j]]p, u, T)

14/ 21

Forward-Only Semantics to Rollbacks Mo i

The model for the FSLH security proof is very abstract:
- Directives control branch prediction
- Attacker chooses location for out-of-bounds accesses

(skip, [X = alt]]p, p,)

. al
in-bounds read

step
(x < alie], p, u, b)

Tead a;
out-of-bounds loaq P

misspeculating (skip, [X = b[j]lp, p, T)

14/ 21

Forward-Only Semantics to Rollbacks Mo i

The model for the FSLH security proof is very abstract:

- Directives control branch prediction

- Attacker chooses location for out-of-bounds accesses

« Forward-only: No rollback mechanism, cannot leave misspeculation

(skip, [X = alt]]p, p,)

. al
in-bounds read

step
(x < alie], p, u, b)

read ag
out-of-bounds loaq ;

misspeculating (skip, [X = b[j]lp, p, T)

14/ 21

Adding Rollbacks wax panck stirure (17

b’ = [be],

RB Ir FORCE

bbbbbbb

(if be then cy else cy, p, i, b) =y (c_y, p, p1, T)

15/ 21

Adding Rollbacks wax panck stirure (17

b’ = [be],

RB Ir FORCE

bbbbbbb

(if be then cy else cy, p, i, b) =y (c_y, p, p1, T)

15/ 21

Adding Rollbacks wax panck stirure (17

b = [[be]]p
(C—|b’7 P My T)
<if be then Cr else Crs Py I b> %rb <Cb’7 P, :u>

RB Ir FORCE

15/ 21

Adding Rollbacks wax panck stirure (17

b = [[be]]p
(C—|b’7 P My T)
<if be then Cr else Crs Py I b> M;:—Z;y)rb <Cb’7 P, :u>

RB Ir FORCE

RB ROLLBACK

(¢, p, u, b)
<C/, plv ,LL/, bl) :ZZZZ’,:}rb <C/, :0/7 :u/) b/>

15/ 21

Rollbacks Are Not Needed (Barthe et al. 2021)

FOR SECURITY AND PRIVACY L&

+ Equal leakage in forward-only semantics = equal leakage with rollbacks?

16/ 21

Rollbacks Are Not Needed (Barthe et al. 2021)

FOR SECURITY AND PRIVACY L&

+ Equal leakage in forward-only semantics = equal leakage with rollbacks?
- Different leakage with rollbacks = different forward-only leakage

16/ 21

FOR SECURITY AND PRIVACY L&

Rollbacks Are Not Needed (Barthe et al. 2021)

+ Equal leakage in forward-only semantics = equal leakage with rollbacks?
- Different leakage with rollbacks = different forward-only leakage

<C—|b7 Py I T> ’ <Cl7 p,7 ,U/, T>
force rollback)
(if - then-else-, p, u,) Q (¢t P, 11, F)

16/ 21

FOR SECURITY AND PRIVACY L&

Rollbacks Are Not Needed (Barthe et al. 2021)

+ Equal leakage in forward-only semantics = equal leakage with rollbacks?
- Different leakage with rollbacks = different forward-only leakage

leak here

<C—|b7 Py I T> ’ <Cl7 p,7 ,U/, T>
force rollback)
(if - then-else-, p, u,) Q (¢t P, 11, F)

16/ 21

FOR SECURITY AND PRIVACY L&

Rollbacks Are Not Needed (Barthe et al. 2021)

+ Equal leakage in forward-only semantics = equal leakage with rollbacks?
- Different leakage with rollbacks = different forward-only leakage

<C—|b7 Py I T> ’ <Cl7 p,7 ,U/, T>
force rollback)

leak here
(if - then-else-, p, u,) Q (¢t P, 11, F)

16/ 21

FOR SECURITY AND PRIVACY L&

Rollbacks Are Not Needed (Barthe et al. 2021)

+ Equal leakage in forward-only semantics = equal leakage with rollbacks?
- Different leakage with rollbacks = different forward-only leakage

leak here

<C—|b7 Py I T> ’ <Cl7 p,7 ,U/, T>
force rollback)
(if - then-else-, p, u,) Q (¢t P, 11, F)

16/ 21

FOR SECURITY AND PRIVACY L&

Rollbacks Are Not Needed (Barthe et al. 2021)

+ Equal leakage in forward-only semantics = equal leakage with rollbacks?
- Different leakage with rollbacks = different forward-only leakage

leak here o
<C—|b7p’:uaT> ><C7p7:u’aT>

force

(if - then-else -, p, pu,)

16/ 21

FOR SECURITY AND PRIVACY L&

Rollbacks Are Not Needed (Barthe et al. 2021)

+ Equal leakage in forward-only semantics = equal leakage with rollbacks?
- Different leakage with rollbacks = different forward-only leakage

<C—|b7 Py I T> ’ <Cl7 p,7 ,U/, T>
force rollback)

leak here
(if - then-else-, p, u,) Q (¢t P, 11, F)

16/ 21

Rollbacks Are Not Needed (Barthe et al. 2021)

FOR SECURITY AND PRIVACY L&

+ Equal leakage in forward-only semantics = equal leakage with rollbacks?
- Different leakage with rollbacks = different forward-only leakage

leak here

(if - then-else-, p, u,) t—> (¢t P, 11, F)
step

16/ 21

FOR SECURITY AND PRIVACY L&

AlwayS-MISpredICt Semantlcs MAX PLANCK INSTITUTE (147"

» unlimited misspeculation

17721

Always-Mispredict Semantics B

» unlimited misspeculation - limited speculation window

17721

Always-Mispredict Semantics L

» unlimited misspeculation - limited speculation window
- attacker-chosen memory locations

17721

Always-Mispredict Semantics L

» unlimited misspeculation - limited speculation window
- attacker-chosen memory locations - flat memory layout

17721

Always-Mispredict Semantics B

» unlimited misspeculation - limited speculation window
- attacker-chosen memory locations - flat memory layout
- attacker-controlled misspeculation

17721

Always-Mispredict Semantics B

» unlimited misspeculation - limited speculation window
- attacker-chosen memory locations - flat memory layout
- attacker-controlled misspeculation - always mispredict

17721

Always-Mispredict Semantics B e (2

» unlimited misspeculation - limited speculation window
- attacker-chosen memory locations - flat memory layout
- attacker-controlled misspeculation - always mispredict

/

How is this more realistic?

17721

Always-Mispredict Semantics Mo i

» unlimited misspeculation - limited speculation window
- attacker-chosen memory locations - flat memory layout
- attacker-controlled misspeculation - always mispredict

/

How is this more realistic?
- proposed for use in Hardware-Software Contracts

17721

Always-Mispredict Semantics Mo i

» unlimited misspeculation - limited speculation window
- attacker-chosen memory locations - flat memory layout
- attacker-controlled misspeculation - always mispredict

/

How is this more realistic?
- proposed for use in Hardware-Software Contracts

» idea: vendor-guaranteed leakage model

17721

From Directives to Always-Mispredict

FOR SECURITY AND PRIVACY L&

Oy
{(e) s2) ’
D
with rollbacks 9/;/
NCI)a 81> ’D/

Oy

(eh o) — 7

always-mispredict /
((c), 51) -

18/ 21

From Directives to Always-Mispredict

A 5
FOR SECURITY AND PRIVACY L&

((¢), 52)

with rollbacks]
O
(o) 1) ;’/ : \

N

out-of-bounds accesses only

Oy

((e), 52) : >

always-mispredict / in misspeculating execution
v

((c), s1)

18/ 21

From Directives to Always-Mispredict

FOR SECURITY AND PRIVACY L&

((¢), 52)

with rollbacks /,
)
c), s ~ >
((e), 51) > \

N

out-of-bounds accesses only

0,
((e 52) : >
always-mispredict / in misspeculating execution
v
NCDa 81> 7 > \

flattened memory layout
independent of speculation

18/ 21

From Directives to Always-Mispredict

FOR SECURITY AND PRIVACY L&

must assume sequential execution
does not get stuck!

(), s2)

with rollbacks]
o/
D

N

((e), 51)

out-of-bounds accesses only

Oy
(), 52) , >
always-mispredict / in misspeculating execution
Y \

((c), s1)

flattened memory layout
independent of speculation

18/ 21

From Directives to Always-Mispredict

FOR SECURITY AND PRIVACY L&

requires equal directives

O, /
((c), s2) 7 ’
with rollbacks]
o/
D

((e), 51)

O,
{(c), s2) .
always-mispredict /
((e), 1) -

R
\

18/ 21

From Directives to Always-Mispredict

Vi
FOR SECURITY AND PRIVACY i@

requires equal directives
% / « same out-of-bounds index must

7

(le), s2)
with rollbacks 9/’ result in same location
D

N
\

((e), 51)

O,
{(c), s9) .
always-mispredict /
((e), 1) -

18/ 21

From Directives to Always-Mispredict

FOR SECURITY AND PRIVACY L&

requires equal directives

O, /
((c), s2) 7 ’
with rollbacks]
o/
D

N\
B

((e), 51)

((¢), 52) ’
always-mispredict //
{le) \

Mmemory access:
One might be in-bounds
and the other out-of-bounds

18/ 21

FOR SECURITY AND PRIVACY L&

From Directives to Always-Mispredict

requires equal directives

02
((c), s3) Z]) /
with rollbacks /
(). s1) %)
D
(e,) % ~ no equality assumption
always-mispredict / when different directives are used

((e), 51) gl/ > \

Mmemory access:
One might be in-bounds
and the other out-of-bounds

18/ 21

From Directives to Always-Mispredict

FOR SECURITY AND PRIVACY L&

requires equal directives

02
(el) - —
with rollbacks /
(), s1) %)
D
(@),) % _one directive must allow
always-mispredict 74 both in-bounds and out-of-bounds access

((e), 51) gl/ > \

Mmemory access:
One might be in-bounds
and the other out-of-bounds

18/ 21

From Directives to Always-Mispredict: Lessons

FOR SECURITY AND PRIVACY L&

* Models can make implicit safety assumptions

19/ 21

From Directives to Always-Mispredict: Lessons

FOR SECURITY AND PRIVACY L&

* Models can make implicit safety assumptions
» undefined behaviour might be intentionally out-of-scope

19/ 21

From Directives to Always-Mispredict: Lessons

FOR SECURITY AND PRIVACY L&

* Models can make implicit safety assumptions
» undefined behaviour might be intentionally out-of-scope
» but this should be explicit!

19/ 21

From Directives to Always-Mispredict: Lesso R

* Models can make implicit safety assumptions
» undefined behaviour might be intentionally out-of-scope
» but this should be explicit!

- Directive-based models must have a directive allowing both in-bounds and out-of-
bounds access

19/ 21

From Directives to Always-Mispredict: Lesso R

* Models can make implicit safety assumptions
» undefined behaviour might be intentionally out-of-scope
» but this should be explicit!

- Directive-based models must have a directive allowing both in-bounds and out-of-
bounds access
» Easy to miss! Affects proofs of Selective and Flexible SLH

19/ 21

Conclusions MAX PLANCK INSTITUTE Ri0)

0O,
<C, 32> /

source ’
A

(C’ 81>

Efficient Mitigation for all programs

FvSLHY O,

((c), s2) ’
forward-only /
(e, 51) '

20/ 21

Conclusions MAX PLANCK INSTITUTE Ri0)

0O,
<C, 82> /

source ¢
A

<C’ 81>

Efficient Mitigation for all programs

FVSLH® o,
{(c), s2) s » . .
o // Formal relative security
e 9/ > proof in Rocq

20/ 21

Conclusions

o
(c, s3) ’
/
(¢, 51) 02/// ’
Efficient Mitigation for all programs
FVSLHY VN
(e, 52) :
forward-only 91/\‘/0
((e), 1) —Stehrozr—= /'2 >
forward-only ;/
{(e), 1) 9‘/ ”
0,
((e), s2) .
with rollbacks 91/3/
Proofs for more precise (), 52 2 >
models (also in Rocq) 2
\ ((c), s») /(?

always-mispredict /
o

((), 51)

MAX PLANCK INSTITUTE ({¢4”
FOR SECURITY AND PRIVACY i@

Formal relative security
proof in Rocq

20/ 21

Conclusions MAX PLANGK INSTITUTE (7

<C’ 81>

Efficient Mitigation for all programs

FvSLHY

0
(¢, s3) z
source 0)//;/
‘N
((e); s3) 7 ’

forward-only

V¥R

(e, 51)

\
(&) =27 7

forward-only

// ~ Formal relative security
o ¥ ., proof in Rocq

%ﬁ

<(ICI)7 81>

<(ICD7 52>

with rollbacks

O,
L7 " work needed
o/ > to connect here

Proofs for more precise (e 51)

models (also in Rocq) \

((e), s9)

always-mispredict

-

{(e), s

20/ 21

Future Work wax pranci werirute (167

 Real-world implementation of Flexible SLH

21/ 21

Future Work MAX PLANCK INSTITUTE (¢

 Real-world implementation of Flexible SLH
» open questions: when during compilation to perform analysis?

21/ 21

Future Work RN

 Real-world implementation of Flexible SLH
» open questions: when during compilation to perform analysis?

- Mitigations for other SPECTRE variants

21/ 21

Future Work RN

 Real-world implementation of Flexible SLH
» open questions: when during compilation to perform analysis?

- Mitigations for other SPECTRE variants
» e.g. prediction of indirect branch targets and return addresses

21/ 21

Future Work N

 Real-world implementation of Flexible SLH
» open questions: when during compilation to perform analysis?

- Mitigations for other SPECTRE variants
» e.g. prediction of indirect branch targets and return addresses

« Ever more accurate models

21/ 21

Future Work T

 Real-world implementation of Flexible SLH
» open questions: when during compilation to perform analysis?

- Mitigations for other SPECTRE variants
» e.g. prediction of indirect branch targets and return addresses

« Ever more accurate models
» Hardware-Software Contracts?

21/ 21

Future Work T

 Real-world implementation of Flexible SLH
» open questions: when during compilation to perform analysis?

- Mitigations for other SPECTRE variants
» e.g. prediction of indirect branch targets and return addresses

« Ever more accurate models
» Hardware-Software Contracts?
» dynamic attackers?

21/ 21

Bibliography wax Lanorc nsrirure (57

Barthe, Gilles, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao, Tiago
Oliveira, Swarn Priya, Tamara Rezk, and Peter Schwabe. 2021. “High-Assurance
Cryptography in the Spectre Era”. In 42nd IEEE Symposium on Security and Privacy, SP,
1884-1901. IEEE. https://doi.org/10.1109/SP40001.2021.00046.

Guarnieri, Marco, Boris Kopf, Jan Reineke, and Pepe Vila. 2021. “Hardware-Software
Contracts for Secure Speculation”. In 42nd IEEE Symposium on Security and Privacy, SP,
1868-83. IEEE. https://doi.org/10.1109/SP40001.2021.00036.

Shivakumar, Basavesh Ammanaghatta, Jack Barnes, Gilles Barthe, Sunjay Cauligi,
Chitchanok Chuengsatiansup, Daniel Genkin, Sioli O'Connell, Peter Schwabe, Rui Qi
Sim, and Yuval Yarom. 2023. “Spectre Declassified: Reading from the Right Place
at the Wrong Time”. In 44th IEEE Symposium on Security and Privacy, SP, 1753-70. IEEE.
https://doi.org/10.1109/SP46215.2023.10179355.

22/ 21

https://doi.org/10.1109/SP40001.2021.00046
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP46215.2023.10179355

	Spectre (v1)
	Previous Spectre Mitigations
	Security for Arbitrary Programs
	More Efficient and Trustworthy Formally Secure Compilation
	Flexible SLH: Providing Efficient Protections To All Programs
	Previous Work: Selective SLH
	Flexible SLH: Removing Restrictions
	Proving Relative Security
	Well-Labeledness
	Proving Relative Security
	Flexible SLH: Recap

	More Realistic Models of Speculation
	Translation to More Realistic Models
	Forward-Only Semantics to Rollbacks
	Adding Rollbacks
	Rollbacks Are Not Needed
	Always-Mispredict Semantics
	From Directives to Always-Mispredict
	From Directives to Always-Mispredict: Lessons Learned
	Conclusions
	Future Work
	Bibliography

